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By generalizing the theory of ‘rapid distortion’ of turbulence developed by 
Batchelor & Proudman (1954) it  is shownin this paper that the turbulent velocity 
around a bluff body placed in a turbulent flow can be calculated outside and up- 
stream of the regions of separated flow, if the incident turbulent Aow satisfies 
the following conditions: (i) if a/L, << 1 or = O(l), Re-l u ~ / S m  <i I < Re*; (ii) 
if a/L, >> 1, Re-l < uL/Um < l/(a/L,) and Re (a/L,)2, where Re = U,a/v, U, 
is the mean uniform incident velocity, uk is the 1.111.5. velocity of the homo- 
geneous incident turbulence, a is a transverse dimension of the body (the radius 
in the case of a circular cylinder), L, is the integral scale of the incident turbulence 
and v is the kinematic viscosity. 

Detailed calculations are given for the flow around a circular cylinder with 
particular emphasis on the turbulence very close to the surface. (The results can 
be generalized to other cylindrical bodies.) Mean-square values and spectra 
of velocity have been found only in the limiting situations where the turbulence 
scale is very much larger or smaller than the size of the body, i.e. L, % a or 
L, <i a. But, whatever the value of a/Lx, if the frequency is sufficiently large the 
results for spectra tend to those of the limiting situation where Lz < a. Thereason 
why the turbulence velocities have not been calculated for intermediate values 
of a/L, is that closed-form solutions cannot be found and that the computing 
time then required is quite excessive. However, some computed results are used 
in the paper to suggest the qualitative behaviour of the turbulence when L, is 
of order a. An important result of the theory is that it illuminates and distin- 
guishes between the governing physical processes of distortion of the turbulence 
by the mean flow, the direct ‘blocking ’ of the turbulence by the body, and con- 
centration of vortex lines at the body’s surface. 

The results of the theory have many applications, for example in calculating 
turbulent dispersion and fluctuating pressures on the body, as shown elsewhere 
by Hunt & Mulhearn (1973) and Hunt (1973). 

In  conclusion the theoretical results are briefly compared with experimental 
measurements of turbulent flows round non-circular cylinders. A detailed com- 
parison with measurements round circular cylinders will be published later by 
Petty (1974). 
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1. Introduction 
The changes in the turbulent velocities of a fluid flowing round a bluff body 

provide an interesting problem for a number of reasons. First, from a fundamental 
point of view this is an interesting case of distortion of a turbulent flow which is 
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different from the other examples which have been studied: distortion by a 
contraction in a wind tunnel (Ribner & Tucker 1953; Batchelor & Proudman 
1954) and the distortion by a shear flow (Deissler 1965; Moffatt 1965; Townsend 
1970). Second, this phenomenon must be understood if other important fluid 
dynamic phenomena are to be explained such as the effects of turbulence in the 
incident stream on boundary-layer transition and separation (Bearman 1968), 
vortex shedding (Petty 1974) and stagnation-point heat transfer (Kestin & 
Wood 1970). Third, since in most situations (whether natural or man-made) 
where a fluid flows round an obstacle the flow is turbulent, there are many prac- 
tical problems whose solutions require better understanding of these turbulent 
flows: for example, calculating heat transfer to heat exchanger tubes (Kestin 
1966); calculating fluctuating loads and fluctuating local pressures on buildings 
(Davenport 1971) and heat exchanger tubes (Owen 1965); predicting gustiness 
in the vicinity of tall buildings or the effect of turbulence near buildings on dis- 
persion of airborne pollutants (Halitsky 1968); or estimating how a tower or a 
building, onto which anemometers are fixed, affects the turbulence near it (Cer- 
mak & Horn 1968). 

The basis of our approach is the ‘rapid-distortion theory’ due to Prandtl 
(1933), Taylor (1935) and particularly developed by Batchelor & Proudman 
(1954), which provides a means of calculating the effect on an initially turbulent 
flow of a change in the mean velocity. For example, in the original application of 
the theory r.m.s. values, spectra and other characteristics of the turbulence were 
calculated downstream of a wind-tunnel contraction, in terms of the upstream 
values. The theory is only applicable if the time taken for a fluid particle to pass 
through the zone in which the mean velocity changes is very much less than the 
time taken for the turbulence to change of its own accord owing to its own viscous 
and nonlinear inertial forces; in other words, each Fourier component (or eddy) 
is affected by the mean flow before it has time to exchange energy with other 
Fourier components. For this approximation to be justified it has to be assumed 
that the intensity of the turbulence is small enough and the scale large enough. 
These assumptions also imply that the turbulence is of low enough intensity for 
the mean flow outside the boundary layers and wake to be only slightly distorted 
by the turbulence; the mean velocity may therefore be assumed known. It follows 
from these assumptions that this problem involving a random process is linear 
and therefore tractable by straightforward mathematical methods. In  its appli- 
cation to wind-tunnel contractions Batchelor & Proudman’s theory did not 
agree well with the experimental results of Townsend (1954), but Uberoi (1956) 
and more recently Tucker & Reynolds (1968) have shown that the theory does 
describe the distortion of turbulence provided that the assumptions of the theory 
are well satisfied by the experiments. The application by Townsend (1970) to 
shear flow also shows the success of the theory in interpreting experimental 
results. The essential differences between our theory and that of Batchelor & 
Proudman (1954) and Townsend (1970) are that, first, non-homogeneous dis- 
tortions are considered (that is to say the turbulence may be of such a scale that 
thenon-homogeneities in the mean flow velocity gradients are of importance) and 
second a boundary condition is imposed on the turbulence that the velocity 
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normal to the surface of the body be zero. (We do not consider eddy sizes of the 
order of the boundary-layer thickness, for which matching with the turbulence 
in the boundary layers may be necessary.) The analysis consists of calculating the 
velocity field for each wavenumber u* of the incident turbulence. As a particu- 
lar example we take the case of a circular cylinder. It is found that closed-form 
solutions are not possible except when a(u*J < 1 or alu*I % 1, where a is the 
radius of the body. For afew values of [u*l of order l/a the velocity field has been 
computed to examine the trends between the limiting cases of large and small 
wavenumber. However, calculating the velocity for enough values of u* for 
r.m.9. values and spectra of the velocity to be calculated for scales of incident 
turbulence L, of order a requires excessive computer time. Therefore results for 
r.m.s. values and spectra can only be obtained when L, % a or L, < a. Despite 
this serious limitation on the usefulness of the theory, the analysis reveals how 
various physical processes combine to  affect the turbulence near a bluff body, and 
explains, at least qualitatively, the main experimental results so far discovered. 

There have been some previous theoretical studies relating to the problem 
considered here. Sutera, Maeder & Kestin (1963) analysed the effect of a simple 
spatially varying fluctuation on the mean velocity in stagnation-point boundary- 
layer (Hiemenz) flow. By considering a Fourier component with wavenumber 
K: in the direction parallel to the axis of the cylinder which receives the maximum 
amplification, they then calculated the effect of this disturbance on the mean 
velocity. The paper demonstrated the importance of vorticity amplification and 
provided some explanation for the effect of turbulence on heat transfer. However, 
as the authors were well aware, such an approach is not a realistic way of repre- 
senting turbulence, especially as the only scales of disturbance considered were 
of order a,, the Hiemenz boundary-layer thickness. The analysis of this paper 
was extended by Sadeh, Sutera & Maeder (1970a), who considered a similar 
kind of fluctuation but now analysed its behaviour outside the boundary layer. 
Taking disturbances with K: of order they showed that some disturbances 
starting upstream decay owing to viscous dissipation before they are amplified 
near the stagnation point. Note that in neither of these two papers were time- 
dependent disturbances considered. One paper where such disturbances are 
considered is that of Lighthill (1954), where the upstream velocity is assumed 
to be uniform in space but varying in time, so that the only changes which are 
not quasi-steady occur in the boundary layer. Lighthill’s analysis is relevant 
to acoustically generated velocity fluctuations but not to turbulence. The only 
previous paper using statistical methods and rapid-distortion theory is that of 
Deissler (1967). Deissler calculated the changes in r.m.s. turbulent velocities and 
spectra along the stagnation line of an axisymmetric body, assuming that the 
turbulence scale is very small and that the effects of the boundary conditions 
on the body’s surface can be ignored. Unlike the analysis of this paper he in- 
cluded the effects of viscosity, using the results of Pearson (1959), and also calcu- 
lated the turbulent heat flux in the direction of the mean velocity. However, 
no attempt was made to justify the small-scale rapid-distortion analysis or to 
point out its limitations. Consequently, in this paper the analysis is stated 
ab initio. 
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There have by now been anumber of experiments to measure mean and fluctua- 
ting velocities around a bluff body when the incident stream is turbulent or non- 
turbulent. The pioneering work of Piercy & Richardson (1930) and all the other 
relevant experiments have been reviewed by Bearman (1972) and Sadeh et al. 
(1970a). In  this paper the only discussion of experiments is left to 87.3, where 
some experimental results are briefly compared with the theory. 

The mathematical analysis of this paper is lengthy but straightforward. It is 
simple by comparison with many recent papers on turbulence theory. However, 
some readers may prefer just to concentrate on the physical assumptions of the 
analysis, the important results and their physical interpretation. In  that case 
they are advised to read $32, 5.3, 6.1, 6.2, 6.3, 6.4 and 7 and to look at all the 
diagrams. 

2. Formulation of the theoretical problem 
2.1. Equations, de$nitions and assumptions 

If the fluid is assumed to be incompressible and of uniform density and viscosity, 
the governing equations are 

au* 1 
- + (u*. V) u* = - -vp* + vv2u* 
at * P 

v.u* = 0, (2.2) 

where u*, p*, p and v are the velocity, pressure, density and kinematic viscosity 
respectively. To avoid using p*, we concentrate on u* and the vorticity a*, 
by taking the curl of (2.1) : 

DW* ao* -- - -+(u*.V)w* = (o*.v)u*+Yv2o*, 
Dt* at* 

where o* = V X U " .  (2.4) 

ThenI(2.2)-(2.4) become the governing equations for our analysis. 

FIGURE 1. The regions of flow near a bluff body and the relevant length 
scales of the body and of the incident turbulence. 
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We have to find the solutions of these equations for the problem of a turbulent 
flow over a stationary bluff body (see figure 1). We assume that the turbulent 
flow upstream is in a statistical sense uniform in space and constant in time, a t  
least to an extent sufficient for the validity of the subsequent theory. (The degree 
of uniformity required will be examined a posteriori.) It then follows that in the 
region of flow near the body although the turbulence varies from place to place 
it remains constant in time. In  other words, the turbulent velocity and pressure 
field is a stationary random process, and thus it is convenient to express u*, I)* 
and o* at a point in terms of their time-averaged, or Eulerian-mean, components 
(denoted by an overbar) and fluctuating components with zero mean; using the 
notation 

u* = U(X*, y*, z*) +u'(z*, y*, z*, t * ) ,  (2.5) 

where 

- - -  
and u' = of = p' = 0. 

We can now express our assumptions about the upstream flow mathematically. 
First, as x* -+ - 00, 

fi (Urn, 0,  O), P P w ,  (2 .6a)  

where U, and pa, are constants. Thence, denoting upstream values by the suffix 
a, 

0, = 0. 
Second, as x* -+ - a, 

- 

u' - Uk(X*, y*, x * ,  t * ) ,  p' N pL(z*,y*, z*, t*) ,  (2 .6b)  

where u', and p:  are the turbulent velocity and static pressure in the absence 
of the body, and are therefore defined for all (x*, y*, z*, t*). Let 

where u; is a constant which characterizes the intensity of the upstream turbu- 
lence. The upstream properties of o, can be deduced from those of u, by (2.4). 

We also make the following further assumptions about the upstream flow and 
a dimension of the body a : 

G,alv = Re 9 1, ul , l lv  = aRe % 1, (2.7) 

a id  

( 2 . 8 )  

(2.9) 

where 1 is a length defining the scale of the turbulence (for example an integral 
scale in the 2 direction defined in (6.3 a)). 1 and Re are also assumed to satisfy 

1 %>Re-& i f  all + 1 or0(1) ,  1 9 Re-* if all < 1. (2.1.0) 

The conditions (2.7)-(2.10) can be expressed more compactly as 

if all < I or O(1) then Re-I < a < 1 < Re$, 

if all 9 1 then Re-l < a < (all)-', Re* 9 all. 
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Now consider an actual flow round a bluff body when Re 9 1, and when there 
is no incident turbulence. Then analysis and experiments have shown that there 
are three main regions of the flow: ( E )  the external inviscid region where the flow 
is irrotational, (B)  the thin boundary layers on the body, with thickness 
8, = O(aRe-4) near the stagnation region, part of which are steady and part 
unsteady or turbulent, and ( W )  the separated flow in the wake in which vorticity 
is non-zero everywhere and large fluctuations in velocity occur. Since the bound- 
aries of ( B )  and ( W )  are fluctuating, and since fluid enters and leaves these regions 
irrotational velocity fluctuations occur in ( E )  which decay as -x* or I y*I -+ GO. 

Let us denote this velocity by uk(x* ,  y*, x*, t”), where V x uk = 0, with a refer- 
ence velocity defined by uk = IukI (xo)  at some point close to the surface of the 
body, say on the centre-line xo = (0,2a, 0). Let the characteristic length scale of 
this turbulence be 1,. 

Thus when the incident flow is turbulent the fluctuating velocity in region ( E )  
has two components u’ and u;. In  order that these two components do not inter- 
act, as we shall show in 52.2, we have to assume that 

a, = UL/% (< 11, P, = &a/(lw%) (< 1)’ (2.11) 

which are good approximations upstream of the body’s centre-line, but poor 
very close to the wake boundary, especially if vortex shedding occurs (Petty 
1974). 

In  our subsequent analysis we shall concentrate on analysing the turbulence 
in region (E) ,  in particular that part of the flow field upstream of the body’s 
centre-line. Since the flow in the absence of incident turbulence cannot be ana- 
lysed exactly, it cannot be expected that exact results will be obtained for a 
turbulent flow. In  the next two subsections we reduce the problem to one which 
is tractable mathematically. This entails making further artificial assumptions 
about the boundary conditions. 

2.2. Order-of -magnitude analysis 

We first introduce the following non-dimensional variables : 

(2.12) 

U(x) = U/U,, Q ( x )  = Wa/U,, u(x,  t )  = U ’ / U ~ ,  w(x, t )  = w‘alu’,, 

U,(X,t) = uL/uL, P b ,  t )  = P’a/(pGul , ) ,  
(x, y, x , t )  = (x*,  y*, x*, t”Em)/a. 

Substituting these new variables into (2.3) we have 

a(aw)/at + ([U + au + a,uJ. V )  (8 + aw) 

= ([a +awl. V) (U + au + a, u,) +Re-lV2(8 + aw). (2.13) 

We now use a heuristic argument to estimate the relative orders of magnitude 
of the various terms of (2.13) in region ( E )  as a,P, Re-l --f 0. The results of the 
analysis subsequently show that we may make two assumptions. First, we 
assume that 

(P)* = O(1). 
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Second, since in general the turbulent velocity at a point is induced by the 
vorticity within a sphere with a radius of order 1 around the point, we can assume 
that upstream of the body the length scale over which u or w varies is O(l) ,  
and is also O(2) near the body if all 9 1. But when a/.! < 1 or 0(1), then u or o 
varies over a distance of order a. Thus it follows that 

(2.14) 

except in a small region O(a) from the stagnation point, where U = O(a). But 
close to the stagnation point and elsewhere near the body the largest first-order 
term is a(w . V) U, so that the relevant ratios are 

This estimate is not always valid as shown in $53.1 .  The similar terms in (2.13) 
involving u, are clearly O(a,) and O(P,). 

To consider the viscous terms we use the empirical result (Batchelor 1963, 
p. 103) that in a turbulent flow the energy dissipated per unit volume per unit 

Hence for turbulent eddies with a scale large compared with the Kolmogoroff 
dissipation length scale (v3/i)), 

(2.16) 

These order-of-magnitude results (2.14)-(2.16) show that for the zero-order 

(U.V)G? = (S2.V) U+O(~z ,~ ,5 , ,~ /3 ,1 , / l ,  Re- I ) .  (2.17) 

Hence it follows that as p, P,, Re-l-+ 0, if G? = 0 upstream, then throughout 

( E )  P = 0. (2.18) 

Hence in (2.13) the first-order fluctuating terms and the error terms reduce to 

mean variables (2.13) reduces to 

aw/at+ (U.  V ) o  = (0. V)  u +O(a,P, aw, P,). (2.19) 

Equation (2.19) is the basic equation for rapid-distortion analysis and was 
used by Batchelor & Proudman (1954). However, the order-of-magnitude 
estimate for the nonlinear terms in (2.19) is smaller than theirs, which was based 
on an estimate for the r.m.s. value of w’, rather than the r.m.s. value of u‘ in our 
argument. No definitive estimate for these terms has been obtained, but we 
believe that Batchelor & Proudman’s estimate is too large. 

To calculate the fluctuating pressurep we use (2.1) subject to the assumptions 
made for (2.19), so that 

(2.20) - vp = au/at + (U. V) u + (u. V) u +a{(u. V) u} + O(P).  

In  order to use (2.20) to calculatep we must first concentrate on u. 
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In  order to solve (2.19) we assume that U has been found from (2.18) and the 
appropriate boundary conditions. Then o can be calculated in terms of 0,. To 
find u we use (2.2) and (2.4) 

2.3. Boundary conditions 
To specify the mathematical problem we now have to state the boundary 
conditions on U and u. Since we have already stated that our intention is to  
examine the turbulence in region (E)  upstream of the body’s centre-line, and 
therefore upstream of the separation point, we postulate that U will be adequately 
described in this region if we make the assumption (As 1) that no separation 
takes place. 

Our justification is that for a steady flow round a circular cylinder potential- 
flow theory describes the pressure and velocity over a distance t 30’ from the 
stagnation point. It should be at least as good for a turbulent flow. Given that 
the scale of incident turbulence is large compared with the thickness of the 
boundary layer on the body (assumption (2.10)), the boundary condition on u 
on the surface S of that part of the body where the flow is unseparated, i.e. the 
boundary between ( E )  and (B) ,  must be 

u.n = 0, (2.21) 

where n is the outward normal from the body. Since we are not concerned with 
the flow in the region ( E )  where it impinges on ( W ) ,  we need not consider the very 
complicated interaction between the incident and the wake-generated tur- 
bulence. Therefore to be consistent with our assumption (As 1) above we assume 
that the boundary condition (2.21) is valid all round the body. 

As regards the boundary conditions far from the body we have already stated 
these in (2.6 b )  for - x, I y 1 , l (z)  I -+ co.t When 1x1 -+ 00 and (y2 + ( z ) ~ ) *  -+ 00 the turbu- 
lence is unaffected by the body, whence the boundary condition is also given by 
(2 .6b) .  However, far downstream (x ++00), even outside the wake in the exter- 
nal region (E) ,  because vortex lines have been strained and rotated by their 
motion over the body, the turbulent velocity u’ does not tend to u‘, . Since this 
turbulence far downstream has a negligible effect on the turbulence upstream 
of the body and since our rapid-distortion analysis can only give a poor estimate 
of the turbulence at  large distances from the beginning of the distortion, we do 
not attempt to calculate this part of the flow field. Therefore, we make the 
assumption (As 2) that, for x > 0, 

o’ = 0: for (x2 +y2 + ( z ) ~ ) *  > R, (2.22) 

where R -+ 00, but it is assumed that in numerical calculations R is a large number 
(say 10). Also, for x z  0 

u’ = u’, as (9 + yz + (z)2)4 --f 00. (2.23) 

Our last artificial assumption stems from (As 1). Since the time taken for a 
fluid particle to travel to the stagnation point is infinite, it follows that the strain- 
ing and thence the vorticity is infinite on the streamline downstream of the rear 

t In this section (2) refers to the co-ordinate z in the caw of a three-dimensional body, but 
the term (2) should be ignored in the case of a two-dimensional body. 
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stagnation poink, on y = 0. This difficulty is overcome through the assumption 
(As 3) that, within a small angle set either side of y, (2) = 0, x > 0, o is a linear 
function of 0 determined by its values at  8 = & 60, for T > 1- 

These expedient assumptions (As l), (As 2) and (As 3) now render possible 
a formal statement of the mathematical problem. 

(i) U is determined by (2.18) subject to the boundary conditions 

u = ( i , ~ ,  0) as (x2 + y2 + ( x ) 2 ) $  -+ 00, 

U . n = O  on S. 
(2.24) 

(ii) o is determined by (2.19), using the predetermined value of U in the 

(iii) u is calculated from (2.2) and (2.4) and is subject to the boundary con- 

u N u, a,s x2 + y2 + ( z ) ~  -> co, ( 2 . 2 5 ~ )  

u .n=O on AS. (2.253) 

equation, and the assumptions (As 2) and (As 3). 

ditions 

FIGURE 2. Tho components of mean velocity at each end of a fluid element 
undergoing stretching and rotation. 

3. The methods of analysing flow round cylindrical bodies 
3.1. Calculation of o 

o can be found in terms of w, by means of Cauchy’s solution of (2.19), which we 
derive with the aid of figure 2 (Batchelor 1967, p. 267). Equation (2.19) is the 
equation for the rate of change of vorticity of a fluid element. If we consider such 
an element to be a thin cylinder with a length dl parallel to w, then the term 
(a. V) U may be expressed in the notation of figure 2 as 

lim [(I4/lW (dU, +dU,)I, 
dZ+0 

t 80 refers to the angle measured from the x axis (the axis of symmetry) in spherical co- 
ordinates, for the case of a spherically symmetric three-dimensional body. 
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where dU, + d U ,  is the mean velocity of one end of the element relative to the 
other, dU, being parallel to o (thus stretching the vortex lines) and dU, being 
perpendicular (thus rotating the vortex lines). Thus Do/Dt is proportional to 
d(dl ) /d t  and therefore if o is parallel to d l  at time to, o remains parallel at all subse- 
quent times, so that at time t, 

dl(~l)/Id1(tO)l = ~ ( ~ l ) / l 4 0 ) l .  (3.1) 

FIGURE 3. The motion of a fluid element in a flow round a bluff body 
showing how it is stretched and rotated. 

The calculation of dl(t ,)  in terms of its upstream value only requires a know- 
ledge of U .  Let dl(to) to be the element AB (in figure 3)  at time to well upstream of 
the body and dl(t,) be the same fluid element having travelled to A’B’ in the 
mean flow in a time t, - to. Then B and B’ must lie on the same streamline, say 
Y = Yo, and A and A’ must lie on another, Y = Yo + dYo,  where Y(z, y) is defined 

aYpIax = u,, axrlay = - u,. (3.2) by 

We now define a function Tx(x, y )  as the time for a particle to reach the point 
(x, y) from a point on the Same streamline far upstream at x = - X ,  where X 9 1. 
Then 

T,(X,Y) = 1% dz‘/U,(x’, Y’), (3.3) 
- x 

where the integral is taken along the line Y(x’ ,  y’) = Y(x, y). Therefore, since 
the time taken to travel from B to B‘ is the same as that from A to A’, 

‘P,(B’) - T,(B) = T,(A’) - T,(A), 

T,(B) - Tx(A) = T,(B) - T,(A‘) = d T  (say). whence (3.4) 

We have only considered an element in the 2, y plane. In  general, AB or A’B’ 
is the component in this plane of an element with another component in the 
x direction, say AC or A’C‘. In  a two-dimensional flow tho component in the 
z direction is not changed at  all, so that AC = A’C’. 

Expressing these results mathematically, if 

and 
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then 
ayP ayP 

dY 
dYY0 = -&ax, + - dy, = - ayo, (3.5) 

since AB is well upstream of the body where aY/ax = 0 and aY?/ay = - 1. Also 

dT = (&!',/ax) dx, + (aT,/ay) dy, = dxo, (3.6) 

since upstream aT,/ay = OandaTx/ax = I .  Onsolving (3.5) and (3.6) for axl and 
dy,, using the easily derived result 

and substituting for o in (3.1),  it follows that 

Also 

To avoid the arbitrary value X in the definition of T,, it is preferable to define 
a function 

AT(x, y) = lim [TX(x, y) - (x f x)] 
x-t a3 

- 1) dx', where Y(x', y) = Y(x, y); (3.8) 

physically AT(x, y) is the time taken to travel from ( - co, yo) to the point (x, y) 
Zess the time it would have taken to travel to the point (x, yo) in the absence of the 
body. AT(x, y) is related to Lighthill's (1956) 'drift ' function, denoted here as 
T(x,  y), by the equation T = x + AT. Here yo is the value of y on the streamline 
through (x, y) when x = - co, so that 

Yo = -YX,Y)* 

For later convenience we define the function A,(x,y) as the change in the y 
co-ordinate of a fluid particle as i t  travels past the body: 

Ay = y-yo = y+Y. (3.9) 

For subsequent analysis it is convenient to use the suffix notation (1 ,2 ,  3) for 
components (x, y, 2). Then, taking the upstream values of wi at x = - X ,  it  follows 
from (3.7) that 

(3.10) 

(3.11) 

Note, that, as x -+ -a, yii = ymij = Jij. Note also that (3.10) is equivalent to  the 
Lagrangian form, used by Batchelor & Proudman (1954), 

w&x, t )  = wj(a, 0) axg/au, where x = a a t  t = 0. 
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It follows immediately from (3.1) that in the absence of the body 

W,j( - x, Y, 2, t o )  

%j (x, y, 2, t, + x + X )  = %j( - x, y, 2, to ) .  

is related to omj at (z, y, x )  as follows: 

(3.12) 

Therefore (3.10) becomes, in the limit X -+ 00, 

wdx, Y, 2,  t )  = Y&, Y) %&, Y - Ay, 2, t - AT). (3.13) 

It is worth noting that (3.12) could have been deduced by a direct appeal to 
Taylor’s hypothesis, but there was no need because that hypothesis is implicitly 
contained in our assumptions (2.8) and (2.9). 

3.2. Calculation of u 
Givenwin (3.13), u now has to be calculated using (2.2), (2.4) and the boundary 
conditions (2.25). Since we know o, and u, at all values of (x, y, x ,  t )  it  is conven- 
ient to define the variables 

Aw=w--o,, Au=u-u, .  

Then Aw and A u  have to satisfy 
V X A U  = A m ,  (3.14) 

Am being presumed known from (3.13), and 

V.AU = 0, (3.15) 

since V . u, = 0. The boundary conditions on A u  are 

A u - t O  as X ~ + ~ ~ + - C O ,  ( 3.16 a)  

A u . n = - u , . n  on 8. (3.16 b)  

Since it may be shown that there is a unique solution to (3.14) and (3.15) subject 
to (3.16), any solution which satisfies these equations must be the correct one. 
We begin by using the fact that any vector can be expressed as the sum of the 
gradient of a scalar and the curl of another vector. Let 

AU = -V@ + V  x +, (3.17) 

where (9 and + are functions of (x, y, z, t ) .  Substituting this expression into 

AW = V x (V x +). (3.18) (3.14) we find 

+ may be further specified (Batchelor 1967, p. 86) by the gauge condition 

v . +  = 0. ( 3 . 1 9 ~ )  

Then, in Cartesian co-ordinates, (3.18) becomes 

V2+ = -Aw. (3.19 b )  

The solution to (3.19b) does not satisfy ( 3 . 1 9 ~ )  unless the correct boundary con- 
ditions are specified. The divergence of (3.19b) gives 

vyv. +) = 0, 
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whence,if V . + = O  on S andas x2+y2+co,  (3.20 a) 

then (3.19a) is satisfied everywhere. The second set of boundary conditions for 
+ is specified by (3.16). Since it is more convenient to satisfy (3.16) separately 
for V x + and VCD we have 

V x + . n = O  on X, (3.20 b )  

IVx+l - t o  as x 2 + y 2 + w .  

Since V.u = 0, CD must satisfy 
v2CD = 0, (3.21) 

subject to the boundary conditions determined by (3.16), namely 

V C D . n = u ,  on X (3.22) 

and IVCDI -+ 0 as x2+y2-+to.  (3.23) 

3.3. Fourier analysis 

We assume that the upstream turbulence is stationary and homogeneous, and 
if, for mathematical convenience, we assume the turbulence only to exist within 
a large box with sides of non-dimensional lengths 2 F ,  2Y, 2 8 ,  and within an 
interval of non-dimensional time 9, then we can express U, and w, by means of 
Fourier transforms$ 

(3.24) 

r m d )  (x, y, z, t )  = [j! co exp ii [K1x + K2y + K 3 z  + d]) 

where CT = - K ~ ,  a consequence of (3.12) (or Taylor’s hypothesis). Since o is 
related to u by (2.4), it  follows that 

(K1, K 2 ,  K Q )  dK1 dK2dK3,  (SJ w m i  J --m 

Smi = i € + j k K j X m k .  (3.25) 

Since the mean velocity over the body is invariant in the z direction, the turbu- 
lence remains homogeneous in the z direction. Thus the turbulence near the body, 
which is inhomogeneous in the x and y directions, can be Fourier analysed as 

ui = OD exp{i( - K ~ ~ + K ~ Z ) } ~ ~ ( X , ~ ;  K ~ K ~ )  d ~ ~ d ~ ~ ,  
-m 

(3.26) 

and sinlilarly for all other quantities stationary in t and z, namely wi, @i, CD and p .  
The inverse transformation for 4&, for example, is 

These Fourier transforms are only of use in so far as they enable us to calculate 
the spectra of the local turbulence in terms of that of the upstream t,urbulence. 

-f We could avoid introducing the unnecessary parameters F, g, 3, if we used Fourior- 
Stieltjes transforms (Batchelor 1953). But we prefer ordinary Fourier transforms on ac- 
count of their greater familiarity to engineers, and because most real flows are finite i n  
extent. 
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This requires expressing &i in terms of Smi by the introduction of a tensor Mil 
such that 

(3.28) 

In §$4 and 5 this tensor is calculated by solving (3.18) and (3.21) for the Fourier 
transforms of @i and 0, i.e. G6 and a. Similarly $ can be expressed in terms of 
Smi by a tensor defined by 

(3.29) 

The next problem is to use the solutions for Nil to calculate the spectra and 
covariances near the body in terms of the known three-dimensional spectrum 
amii of the upstream turbulence, defined, following Batchelor (1953), as 

<Dmij(K) = - Rmij (0, rII, r,, 7) exp { - i [ ~ ~ r ~  + - K~ r]} dr,dr,dr. (3.30) 

The simplest spectrum to calculate near the body, but the most lengthy to obtain 
experimentally, is ‘the two-dimensional spectrum ’ 

where R i j ( z , y ; x ’ , y ’ ; r Z , ~ )  = ui(x,y,z,t)uj(x’,y’,x+r,,t+7). 

The most commonly measured spectrum is the ‘one-dimensional spectrum ’ 

Rij(z, y; z’, y’; r,, 7 )  eiKiTdr. (3.32) 

If (x’, y‘) = (x, y) and r, = 0, the spectrum is the ‘power spectral density’ at  a 
point and is real. If (x’, y‘) = (x,y) and rz =i= 0, it is called the ‘coherence’ and is 
real. But if (x’,y’) + (x,y) it is usually called a ‘cross-spectrum’, and has real 
and imaginary parts. From Oij can be found the cross-variance at  two points: 

with time delay 

and without 

(3.33) 
Bij(x, y; x’, y’; r,, r )  = Oije-iKIT d q ,  I:* 

W 

ui(x, y, x )  uj(x‘, y‘, z + re)  = f O i j ( ~ J  
-02 
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whence the mean-square turbulent velocity uT(x, y, x )  can be found. Other useful 
correlations can be derived once Y,i and 0 ,  are known. Hereafter we shall 
assume that (5, y) = (x’, y’) in Y4,, 0, and Rij unless otherwise stated. 

CD,, andYij are related to Swi and u$, as a result of their definitions, as follows: 

where S ( K ~  - K;) is the Dirac delta function and the dagger superscript denotes the 
complex conjugate. Also 

Substituting the values for Mi, found in (3.28) into (3.35) we have 

W 

ypi j (K1)  K 3 )  = 1 MtdK) q m ( K )  @ m Z n ~ ( ~ )  d K Z *  (3.36) 
-m 

The important result for pressure calculations is the one-dimensional spectrum 
at one or two points, which by similar analysis is shown to be 

where 

Thence (3.38) 

This section shows that the mathematical problem is to calculate Mi, and Q,, 
and then perform the necessary integrations to obtain whatever spectra may be 
needed. 

4. Solution for the case of flow round a circular cylinder 
4.1. Exact solutions in terms of Fowrier series 

To obtain the solutions to (3.18) and (3.21) for turbulent flow round a circular 
cylinder (shown in figure 3) we work with the Fourier transforms of +i and @ a.s 
defined in (3.26). In  Cartesian tensor notation (3.18) becomes 

--m ~ X P { ~ ( K ~ Z + K ~ ~ ) ) S , ~ ~ K ~ ) .  (4.1) 

Bnt from (3.13), 

Therefore, if we define a new variable aij(x, y; K ~ ,  K ~ ,  K J  by 
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} (4.2) 
(4.1) becomes (az/ax2+a2/ay2-K~)aii = - fiij, 
where Rij = [yij eXp { ~ ( K , A ~  - K ~ A ~ ) )  - 6ij] exp { i ( K l X  + KzY)). 

It follows from their definitions in (3.8) and (3.9) that, as x -+ - 00 or y -+ If: co, 
AT, Ay -+ 0 and y,i -+ so that Qii -+ 0. However, when x -+ + co and y = O( 1) 
we have to use the artificial assumption  AS^), equation (2.22), in order that 

Now the boundary conditions (3.20) can be expressed in terms of ati. To do 
this it is convenient to adopt the notation that, for the transforms specified in 

Rii --f 0. 

(3.2% 
ajax, = i K 3 .  

Then for a circular cylinder (3.20) become 
a 

aqki/ax, = 0 at r = 1 and as r +co, 

n,eijka@,/aXj = o at r = I ;  eijka$,/azj = o as r -+ co. 
fi 

To render these conditions applicable for aij we first note that, since 

v .a, = ao,,laX, = 0 and v . U, = au,,lax, = 0, 

KiSwi  = Kif ls , i  = 0. 

Therefore the boundary conditions (3.20) for aij become 

aa,,/ax, = A K ~  on r = 1 andas  r+co, (4.34 

nisijkaakl/aXj = ,UK~ a t  r = 1, (4.3c) 

eiikaa,,/axi = , u ~ K ~  as r --f co, (4.3b) 

where h and ,u are scalars and ,LA, is a vector. It may be proved that equating these 
functions to zero only affects the value of aij by an arbitrary constant. 

TO calculate the various terms in a, we first need to find the mean velocity U, 
which has to satisfy (2.18) and the boundary conditions (2.25). For the case of a 
circular cylinder we have the standard potential-flow solution : 

u = (1 - (x2 - y2)/(x2 + y2)2, - 2xy/(x2 + y y ,  0). (4.4a) 

Hence Y? = - y + y/(x2 + y 2 ) ,  Ay = y / ( x 2  + y2), (4.4b) 

and following Darwin (1953), if 0 = tan-l (ylx), 

MO,W = (1/5) { (1 ' -+52)  ~ ~ ( 5 2 )  T F ( e  -in, 5211 - CELKZ)  T E,(O - i n ,  c ~ ) I > ,  
(4.4c) 

for 8 471, where c2 = 4/(4+Y2). ( 4 . 4 4  

Here F(0 -$T, 5 2 )  and E,(B-Qn, gz) are elliptic integrals of the first and second 
kind, and K((sa) and EL(62) are complete elliptic integrals of the first and second 
kind. Although yij can be calculated from the tabulated forms of these integrals, 
in general, it is as simple to compute A,@, y) directly by integrating l/Ux along 
the streamlines, and thence to deduce yij  from aT/ay and aT/ax. Lines of constant 
AT and graphs of aT/& and aTl(ra8) are shown in figures 4 and 5(a) .  Since 

41 F L M  61 
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17: 

FIGURE 4. Lines of constant AT(%, y), where AT is the time taken to reach the point (2, y) 
less the time it would have taken in the absence of the body. 

\ h 

bn 1. ! n  in n 

8 

FIGURE 5(a) .  For legend see facing page. 

yij - Sij is small when (9 + y2)4 > 10, x < 0, for numerical (bu5 not analytical) 
calculations we assume 

R, = o for (xZ+y2)i: > R ( x z O ) ,  (4.6) 

where R = 10. Hereafter we assume Rij to be a known function. 
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(4 
FIGURE 5. Graphs showing the distortion of the vorticity of the incident turbulence. 
(a) The vorticity tensors ylz ( = - aT/r 88) and yzz( aT/ar) as functions of 8 at  constant 
values of r.  (b )  the vorticity tensor f,, (note yZz = lI',,I)_close to the surface of the cylinder 
when K~ = K, = 10 a t  8 = pn. ( 0 )  The vorticity tensor I?,, close to the surface of the cylin- 
der away from the stagnation point 8 = $n when K~ = 5 ,  K,  = 25. (d )  The vorticity tensor 
r,, close to the surface of the cylinder on the stagnation line 8 = R when K~ = 5 ,  K ,  = 25. 
u 

41-2 
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Since we are to consider the turbulent flow round a cylinder, it is convenient 
to use cylindrical co-ordinates ( r ,  8, z )  and to write vectors in terms of ( r ,  8, z )  
components, with superscript tildes to denote this difference. For example 

Gri = ali cos 8 + sin 8, 

di,, = - aii sin 8 + aij cos 8, di,? = a3i. 

In  this tensor notation the first suffix is used with (1, 2, 3) referring to ( r ,  8, z )  
components, but the second suffix always refers to Cartesian components of the 
relevant upstream variable. In the case of Eij, the upstream component is that of 
vorticity; in the case of Bit (referred to later) it  is velocity. 

The turbulent stream fiLnction aij. In  cylindrical co-ordinates (3.19 b )  becomes 

V2$, - (2 / r2 )  &,ke/a6 - $Jr2 = - Aw,, ( 4 . 6 ~ )  

V2$e i- (2/r2) a$,.[a6 - $e/r2 = -Awe, (4 .6b )  

V2$$ = - A w ~ ,  ( 4 . 6 ~ )  

where v2 = a2/ar2+ ( i / r )  a p +  ( i / r 2 )  ayae2-t. aya22. 

To find Eij, we express Eij and Qii as Fourier series: 

Note that f i i j  has to be found from yi j  and defined as 

U, -aT/(ra6)  0 

In cylindrical co-ordinates (4.2) has to be converted into equations for E i j  in the 
form (4.6). Thence a:? and a:? have to satisfy 

( 4 . 8 ~ )  

subject to the boundary conditions resulting from (3.20) and (4.3), 

(4 .9b )  
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In  (4.9) we have specified the functions A, ,u and p.i defined in (4.3) to be zero. 
Asr-+m 

(4 .94  

and (4.9a) is also valid. Equation ( 4 . 9 ~ )  implies that for finite K ~ ,  K~ and K ~ ,  

as r -+ 00, aij + 0. An alternative method for finding 4 is to use the fact that 
V .$ = 0 for all values of r. Then $1 and g3 can be calculated from (4.6a, c) and 
g2 calculated from V . 4 = 0. It may be shown that calculated by this method 
satisfies (4.6b) identically. Since this is an easier method for calculating a:? 
and a:? when n 

First, we calculate di3j from (4.8 G) directly, using the complementary functions 
Kn(lr~,I)  and In(lr~31) (modified Bessel functions) and the method of variation 
of parameters: 

1, it is one we adopt. 

While the constant of integration r2 is determined by (4.9c), the other constant 
r,is not determined by (4.9 b). However, rl may be chosen at this stage to simplify 
the subsequent algebra. We find rl 1, and r2 = R [defined in (2.22)]. Second, 
since we are using the fact that V , (I = 0 [or (4.9a)l is valid for all r ,  &2i can be 
found in terms of di,, and &., (for n 2 1); 

(4.11) 

EZj is then substituted into (4.8a), giving an equation for &,, in terms of alj and 
Z3j. For n = 0,  we have 

aiidforn > 1. 

where 

The solution to (4.12) is 

(4.12) 

(4.13) 
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where 

a result from ( 4 . 9 ~ ~ )  and the fact t,hat 

c$ = I o ( / K 3 1 )  a?g(r = I)/% 

aszzjar + (n;yr) + i K 3  ag = 0. 
From (4.13), for n 2 1, 

To calculate Zzi, we use (4.Sb) for the case n = 0 to find 

For n 3 1, we use (4.10), (4.11) and (4.15) to obtain 

(4.17) 

To satisfy (4.9b), it follows that, for n = 0, 

cg= -- 
while for n 2 1, 

( 4 . 1 8 ~ )  

where 
1 (4.19) 

Thus Eij  can now in principle be calculated with Z3, given by (4.10), dilj by 
(4.14), (4.15), (4.18b)and(4.19),andZZj by(4.16), (4.17) and (4.18). The problem 
of computing these integrals is left to 3 4.2. 

Turbulent velocity potential pi. To calculate 6, the Fourier transform of a, we 
have to solve (3.21). But first we express 6 in terms of a new function pi, as 
before: 
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pi is now expressed as a Fourier series: 

m 
pi = { & n ( r ; ~ 1 , ~ z , ~ 3 ) c o s n 8 + f i n ( r ; ~ 1 , K 2 , ~ 3 ) s i n n 8 ) .  (4.21) 

n= 0 

In  cylindrical co-ordinates, (3.21) becomes 

(4.22) 

The boundary conditions (3.22) and (3.23) reduce to 

as r - f o o ,  &-to ,  whence pi+(), 
a t  r = 1, ap ip  = (cos 0, sin O , O )  exp {i(K1 cos e + K2 sin H)),J 

1 (4.23) 

whence 

where 

(4.24) 

(g) = %so I 2n (sinno) cosn0 (cosO,sinO, O ) e x p { i ( ~ ~ c o s ~ + ~ ~ s i n 8 ) ) d ~ .  (4.25) 

Here I = 1 for n = 0 and I = 2 for n > 1. Thus G:n = 0 and GP = 0. 
Performing the integrals in (4.25) we find 

cos (n + 1) g3 

sin (n + 1) c3 

- cos (n + 1) r3 
cos (n - 1) w3 

- sin (n - 1) w3 

- cos (n - 1) w3 

where k,, = ( K ~ + K $  and c3 = tan-l ( K ~ / K ~ ) .  The solution to (4.22) subject to 
the conditions (4.23) and (4.24) is 

(4.27) 

Calculating the tensor Mdn. We now show how the solutions for aij and pi can 
be used to calculate the tensor Mi,. Since 

u = Au+u, = -V@+VxJy+u, ,  

it follows from the definitions of aii and pi that, using Cartesian co-ordinates 
again, 

(4.28) 
0 3 . 3  

-03j-1 
&(x, y, K1, KQ)  = / ((M$)+ Mi;)) 8,j -I- UijS, j )dKz,  
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where 

and 

(4.29) 

(4.30) 

Since smi = c ~ ~ ~ ( ~ K ~ S ~ ~ ) ,  (4.28) reduces to the required form of (3.28), namely 
m 

a i (x ,  y, K1, Ks)  = 1 ( M i l ( x ,  y; K1, K Z ,  K s )  Sccl(K1K2 d K Z >  (4.31) 
- W  

where M ,  is defined by 
M ,  = Mi?) + A!$) + N!$),) 

(4.32) 
where M y  = iUiiEjk2K,;.  I 

4.2. Numerical results 

The problem of computing Mil, as defined by (4.31), is fairly straightforward. 
However, it is worthwhile appreciating the salient features, the problems in- 
volved and the time taken in computingMil in order to understand why we cannot 
realistically compute the turbulence except in some special types of flow. 

The calculation of Qi,(x, y ,  K ~ ,  K ~ )  is perfectly straightforward. T,(x, y) was 
computed by integrating I /& along streamlines from x = - X  (in our case 
X = 10) t o  the point (5, y) .  Thence Tz2 = aT/ar, Yl2 = - aT/r a8 and A, are found. 
The other terms in Qii can be calculated directly from (4.3). aii was computed a t  
40 regularly spaced values of B and 40 values of r from r = 1.01 to r = 10, with 
spacings ranging from 0.01 near r = 1.01 to spacings of 1.0 for r > 6. Since 
Qij is calculated no closer to the body than at  r = 1-01 it was decided that Mi, could 
not be calculated any closer than a t  r = 1.1. Our second assumption (As 2) was 
used, taking R = 10, to justify calculating Oij for values of T < 10. Then using 
(As 3) to calculate aii close to the line 8 = 0, taking 68 = &r 2 o  , the Fourier coeffi- 
cients Q g  and Q$(r) were calculated for 0 < n < 20 a t  the same intervals from 
the values of aii a t  the 40 values of 8. For both and other terms it is important 
to know how fast the Fourier series converge, taking as a crude measure of 
convergence the ratio A, of the moduli of the largest term and the last term in the 
series, i.e. the twenty-first. Table 3 in the appendixgives thelargest term I Q:y1,,,, 
its value of n and A, for various values of K~ and K~ a t  r = 1.01 and r = 3.6. The 
table shows up two trends, which are readily explicable. The first is the 
effect of K~ and K~ increasing, which is that when the variations in fi$j occur 
over smaller distances the terms in the series l2:: decrease with n more 
slowly. The second trend is that the series converges more slowly as r increases. 
The explanation for this is that the distance in the 8 direction between the 
points a t  which odj is calculated increases as r increases, so that the Fourier 
series representation of Qij becomes increasingly inaccurate and the errors 
involved take the form of spurious terms at the higher values of n. 

In order to compute C:?, and thence a$, it is first necessary to compute the 
functions and F:?. The integrals in these functions and a:? and a:? involve 
integrating a function whose value is known at the the 40 values of r from r = 1.01 
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to r = 10. This is done by dividing up this range into portions over which the 
function is known at equally spaced points, e.g. spaced at 0-01 from r = 1-01 to 
r = 1.1, or 1.0 from r = 6.0 to r = 10.0. Then the final integral is a sum of the 
integrals for each of these portions, obtained by using the five-point Newton- 
Cotes method of integration (the three-point method being Simpson's rule). 
The modified Bessel functions were calculated by a standard subroutine. Clearly 
this method is only reasonable if Qi, does not vary appreciably between the values 
of Y at which it is calculated, which means that the method is limited to values of 
K~ and K~ less than 2 or 3. Instead of calculating di,, from a? and aF by summing 
the Fourier series, and then calculating aij defined in (4.30), it  is better to find the 
terms in the Fourier series expansion of tii,, namely ~$7 and a:?. Then we can avoid 
differentiating di,,. The convergence for a:?, as a function of K ~ ,  K~ and K ~ ,  was 
very much better than the convergence for Qiy because of the Bessel functions 
involved in the integrals. To substantiate this point we have given in table 4 
the largest term nmax and A, for a::, for various values of K ~ ,  K~ and K ~ .  

The only poor convergence occurs when K~ is small and or K~ are large. Note 
that, though the convergence is rapid when K~ = K~ = K~ = 3-0, the results are 
probably erroneous because of the coarseness of the r ,  0 grid for these values of 
K~ and K ~ .  

The calculation of f i n  and By, and thence M$, is simply a matter of summing 
series of known functions. The convergence is always better than for ai,. 

Once uii and M$) have been computed, iI& follows immediately. Results for 
Mi?), HE) +Mi") and ql are given in tables 1 and 2, in $5.3. 

The time taken to compute Mi, for one set of values of K ~ ,  K~ and K~ at a given 
point (x, y )  cannot be stated exactly. However, on an IBM 360 computer, to com- 
pute Q:: and QiT for one pair of values of K~ and K~ at the necessary 40 values of r 
takes 70s. To compute the constants C$ and C:? for one set of values of K ~ ,  K~ 

and K~ about 6 s are needed, and then to  compute aij at some point (r,  0 )  a further 
9 s. To compute M$) only about 3 s are required. Thusif Mil is to be computed over 
a range of, say, 25 values of K~ at one pair of values of K~ and K ~ ,  at one point 
(x, y ) ,  the time for each value of K$ is about Q min. 

From (3.32) and (3.33) we see that, to obtain the spectra and r.m.s. values of 
uiui, Mi, has to be evaluated over all wavenumber space and then, after being 
multiplied by Mim and amnrn, integrated. Thus, if Mi, is calculated at  say 25 
values each for K ~ ,  K~ and K ~ ,  i.e. 15 625 points, the overall time taken is about 87 h, 
clearly an unrealistic time. 

The conclusion we draw from this fact is that asymptotic methods must be 
used to gain an understanding of the flow. But, as $5 shows, computations of 
Mi, are useful in that they show how the incident turbulence is distorted in the 
wavenumber region which cannot be analysed by asymptotic methods. 

- 

5. Asymptotic analysis 
5.1. Low wavenumber limit 

So far we have neither been able to obtain an analytical solution to our prob- 
lem nor have we found it practical to compute a solution for other than a few 
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values of the wavenumber K. Therefore we now look for asymptotic solutions in 
the limit k( = I K J )  -+ 0 and L -+ 00. For both these limiting cases it is necessary to 
examine the original equations rather than to use the asymptotic forms of the 
Fourier series solutions of 5 4.1. 

5.1.1. Velocity tensor Mi,. We first attempt to find the solution to (4.2). Al- 
though we continue to use cylindrical co-ordinates, it is convenient to revert to 
Cartesian tensors aij, Qj, etc. When k --f 0, Bti can be expressed as an expansion 
which is uniformly valid for all values of r and 6. 

aij N [Ayij(r, 8)+iKkVijk(r,8)+O(k2)]exp(ir(K,coS8+K,si118)}, (5.1) 

where 
Ayij = ytj - Sij, vij, = A,yij, vij2 = - A,yii, and vijs = 0. 

yij is defined in (3.11). The result is due to the fact that, as r + 00 with 8 = O(l), 

AT - - cos 0/r,7 (5 .2)  

and Ay = sinO/r. 

Equation (5.2) is easily proved by considering the flow when x +-a or when 
‘F --f co. From (3.11) and (4.4) the functions Ayij(r ,8)  and v $ j k ( f , 8 )  can only be 
expressed analytically in terms of elliptic integrals, but, as r 3 1 and r + 00, 

these expressions have simpler forms. From (4.4) it follows that, as r -+ 1, 

} (5.3) 
AT - - Qln (-ln [sin (is)] - ( 1  + cos 8 - &ln 2) + if[+ O(e21n f [ ) ,  

A, N (l-$)sin8, 

where 6 = r - 1. Hence as r 3 1, yij N g@(r, 0) + aij, where 

- cos 28 

28 

sin 0/[2(r - l)] 

0 

- cos 8/[2(r  - I)] 

Therefore, as r -+ 1, Ayij N g$)(r, 81, 

whence from (5.1) and (5.3) 

K ~ v ~ ~ ~  - - K& In ( r  - 1) (g$)(r, 8) + Si j ) ] .  

1 
Whenr + co, A7i.j N -3g$.j’)(r, 8), 

whence from (5. I )  and (5 .2)  

where 

cos20 sin28 

(5.4) 

(5.54 

( 5 . 5 b )  

(5.6a) 

( 5 . 6 b )  

-f By taking 0 = O(1) as r --f 03, we are excluding the region near y = 0, I% > + 1. Im- 
plicitly we are using assumptions (As 2) and (As 3) of $2. 
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Thus Ayij = O(l/r2), whereas K ~ v ~ ~ ~  = O(k/r) .  Now consider two overlapping 
limiting cases when r -+ 00. 

(a)  k + 0, rk = F -+ 00. Let K~ = K? k (where K: is O(1)); then in terms of F 
equation (4.2) becomes 

Therefore, since K ;  is O( 1) as T --f co, the solution is 

[ kzr + k2r2 exp {ir(K1 cos 8 + K~ sin O)}. (5.7) I iSi&cl cos 8 + K~ sin 8) g(.m) 
or mii N - 

In  fact (5.7) is valid for all values of k if rk + co, r 3 00 and P / r  -+ 0. 
(b)  k + 0, r + 00; rK1, rK2 = o( l), rK, arbitrary. Now (4.2) becomes 

(5.8) 

1 
r2gi?- r 

i ( ~ ,  cos 8+ K~ sin 0) 
Qij N -- [s , j+g$q+O(k2) .  where 

Since we are looking for an asymptotic solution to V2+ = - A o  [i.e. (5.8)] as r+co, 
we cannot satisfy the gauge condition V .  + = 0 by specifying boundary condi- 
tions at r = 1. Instead we satisfy this condition directly by specifying that for all 

aaiipxj = hKj. (5.9a) 

(In this case the solution is simpler if h is an arbitrary scalar.) The boundary 
condition on the velocity is the same as in (4.3 b) ,  namely 

(x, Y) 

eijk 8akl/8xj -+ , u ~ K ~  as r --f 00. (5 .9b )  

Then if we also choose the complementary functions to (5.8) such that aij is 
finite or a constant when K~ + 0, aii must have the form 

(5.10) 
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where pi:) = [si;8 -c;$ w] cos8 sin0 -sin0 cos8 0 

p$) = [ co;8 si;8 ;], 
-sin38 cos38 0 

0 

and Cij is any constant tensor such that C,j = 0. Note that the second and third 
terms are present in order that the gauge condition (5.9a) is satisfied, at least to 
O ( k ) .  Note also that, as r K 3  -+ co and T K ~ ,  r~~ = 0(1), a,13 tends to the limit given 
by (5.7). 

Near the body we can only find ai3 (k -+ 0) as a function of 5 ( = T - 1): 

0 -sin0 0 

x ( ~ ~ l n ~ - ~ ~ ~ [ ~ l n ~ ~ - 2 ~ l n f + 2 ~ ] } + 0 ( ~ , ~ 2 l n ~ ,  k2) as ~ + i ,  

wherefij(8) and gi,($) are unknown functions of 0. 
To analyse the entire flow region as k --f 0, it is necessary to expand ai3 and 

aij [given by (4.30)] as asymptotic series of the form 

aii = a$) + a p  + a& + . . . , (5.11) 

where the terms are 0(1), O(k ln  and O(k)  respectively. By a fortunate quirk 
of the analysis, it turns out that we can find ad, to 0(1)  everywhere. We first 
calculate ah?) for all values of r ,  subject to the condition rk = o( 1). Since, to O( l),  
Q,j = 0, because AySi = 0, 

(5.12) 

The solution to (5.12) is determined by the boundary conditions as T -+ co (which 
are known from (5.10)) and at  T = 1, for which the relevant condition is ( 4 . 3 ~ ) :  

r-lBa&;)/aO = o at r = 1. (5.13) 

The solution to (5.12), subject to  (5.13) at r = 1 and (5.10) as r+o3 (with 
rk = o(l)) ,  is unique and is 

($0) 3j = 1 d1.n ( x 2  + Y2) (283j) + 8331. (5.14) 

a@ satisfies the condition (4.3a) at  r = 1 in conjunction with ai;) and 4;). Since 
it may be proved that solutions to (5.8) for a!:) and a&) which can also 
satisfy this condition do exist, the solution (5.14) for a$) now satisfies all the 
necessary conditions. From (5.14) and (4.30) it follows that, as k --f 0, 

a!? N y83j/(x2+y2), a@) - -x8,J(x2+y2). (5.15) 

To calculate aQ3 to O( i), rather than solve for aij and azj, it is more convenient to 
take the curl of (4.2) and solve directly the equation 

(a2/ax2 + a2/ay2) a,, = 0. 

(5.16) 



A theory of turbulent flow round two-dimensional bluff bodies 653 

where, to O(l) ,  a, = yzi -ymij = Ayi3. The boundary conditions are 

a$;) = aai:)/ax - aafj)/ay as r -+ CO, 

a$) being given by (5.10), whence i t  follows that as k -+ 0 and r + 00 

u p  N (y/(x2+ y2), -z/(x2+y2), 0). (5.17) 

The exact solution to (5.16) as k -+ 0 is similar to that found by Lighthill (1956) 
for a weak shear flow round a circular cylinder, and is easily deduced by inspecting 
the full expression for ytj in (3.11). We find that the solution to (5.16) satisfying 
(5.17) is 

a(0’ 3j = ( A v  AT, 01, (5.18) 

where A, and AT are defined by (3.8) and (3.9). 
By considering the limit of (5.10) as r~~ -+ 0, it follows that, in expanding 

atj as a power series in K ~ ,  there must be terms in Kiln \.,I. This is the reason for 
the term ai$)(x, y )  in (5.11), which is O(k1n I.,]). Since the expansion for 

Qij@, Y ,  K1, KZ, K3) 

has no terms in kln  it follows that, equating terms O(kln  I K ~ ! )  in (5.8), 

v2ap = 0, (5.19) 

and the boundary conditions follow from (4.3) and (5.10) : 

(5.20) I a$) N 

x [2Sij(tc1 cos 8 + K~ sin 8 )  + (K~,LL\ . )  + K~,U‘$))] + Cdi as r -+ co, 

aaif)/r  88 - i ~ ,  (a!$ cos 8 - a!?) sin 0)  = o at r = 1, 

8a$)/8xd = AK,, co > r 2 1, where h = O(ln K ~ ) .  

These conditions specify the constant C,, so that the solution is found to be 

a$?) = 8 In ( $ 1 ~ ~ 1 )  S,, 4, + t i r h  ( S I K ~ ~  ) 

x { 2 ( ~ ~ c o s B + ~ ~ s i n B )  (&ii - St383i/r2) +K~,U$)+K~,U$) } .  (5.21) 

Thence the contribution to uii of order kln 1 ~ ~ 1  is 

1 0 0 &ln(91K31) [tc1sin28/r2+~,(1 -cos28/r2)]  

0 0  0 

a!&) = 0 0 - - ~ i l n ( ~ ~ ~ ~ ~ ) [ ~ ~ ( 1 + ~ 0 ~ 2 8 / r ~ ) + ~ , s i n 2 8 / r ~ ]  . (5.22) t? [ 
To find pi (defined by (4.21)) and thence M$) (defined by (4.29)) as k -+ 0 we 

use the asymptotic form of the Fourier series expressions for pi. We have to 
consider the limiting cases (a)  and ( b )  as before. 
(a) k --f 0, rk = F -+ co. Then (4.27) shows that p;, M$) = O(e+Ks).  Therefore 

we can ignore pi and M$ compared with adi and azj, which are O[(kr ) - l ] .  
( b )  k + 0, rk = o(1). Calculating GT and Gj* directlyfrom (4.25) and using the 

asymptotic forms for K ,  ( r K 3 ) ,  as k -+ 0, we find that if we retain terms up to 
O(k2) the Fourier series expansion for terminates at  n = 2. The detailed 
expression is given in the appendix. 
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Mi, can now be found for small values of k, from o w  knowledge of and M!;) 
since, from (4.32), 

Mi, = M~~)+1M~)+S,expji(Klx3.~,y)), 

where = ie j ,c l~lcai j .  The results have shown that, as E --f 0, Mi, can be ex- 
panded in powers of k.  For the region of greatest interest where rk = o( 1) we 
find 

Mi, = Hi!) + Mi:) + nil$+) + Mi!) + . . . , (5.23) 

where the various terms are O(  l),  O(k) ,  O(k21n and O(k2) respectively. We 
assume a similar notation for Mi?) and M$). Since aij  = O( 1) and MfiB1) = O( 1) as 
E + 0, Mi!) = a&”) + ail where M$O) is deduced from the appendix, whence 

O 1  1 

1 - (x2 - y2)/[(x2 + y2)2] 2xy/[(:c2 + y2)2] 
- 2 ~ y / [ ( ~ ~ + y ’ ) ~ ]  1 + ( X 2 - ~ 2 ) / [ ( ~ 2 + ~ 2 ) 2 ]  0 . (5.24) 

0 0 

Using the results (5.15) and (5.18) for aii and those in the appendix for fM‘i“,.l) i t  
follows that 

&f$) = iM$“) + M9l’ + i ( K I X  + K 2 Y )  ail, (5.25) 

by the where 
appendix, so that 

For example, on the stagnation line 6 = 7~ 

= iejklKkaij. Similarly, a:?) is given by (5.22) and 

Nif)  = icjkl K ] ~  a!?) + M 9  =). 

( K $ +  K ! )  (1 - i / Y 2 )  - K 1 K 2 ( 1  - 1/r2) 0’ 

H \ ? ) = ~ ~ ~ ( ! L I K Q ) )  - K 1 K 2 ( 1 f 1 / Y 2 )  ( K f + K : ) ( 1 + l / Y 2 )  0 
0 0 0 

Although M(is1,2) can be found for GO > r 3 1, adi can be calculated to O( ) only 
when r > 1, so that and therefore Mi:) are not known for the whole range 
o o > r 3 1 .  

An interpretation of the physical significance of the various terms in the ex- 
pansion (5.23) is given in 95.3.3. 

5.2. High wavenumber Eimit 

5.2.1. Velocity tensor Mi,. To find the solution to  (4.2) when E 9 1, it is first 
necessary to express Rij(x, y )  in terms of its value at  a neighbouring point (xl, yl). 
Let 

Q,@, Y) = &j@, Y)  - J37)(x, Y), (5.26) 

where rij = Yij(x, Y) ~ X P  { ~ [ K , ( A ,  + X) + K ~ ( Y  - Av)I)) 

rp  = ymii exp { i [ ~ ~  x + ~ ~ 9 1 ) .  

Then by Taylor’s theorem 

fi,(x,y) = rij (xl,y,) (1 +gi,x’+htjy’+O(r’2))exp{~[xl~’+x2~’+O(kr’2)1) 

- r~~)(x,,y,)exp(i[KIX’+KpY’]), (5.27) 
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where x‘ = x-x,, y’ = y -y l ,  r‘ = (x‘2+ y’2)4, 

xl(xl, y l )  = ~ l [ a A T / a x  + 11 - ~,aA,/ax = K~ aT/ax - K~ U,, 

X2(”1> 91) = K1 aAT/ay + K2( - daylag) = K1aT/ay + K 2  ul* 

Stream function aij away f rom the body. It can either be proved by using the 
Green function solution (used later) or shown by inspection that the solution 
aij to (4.2) if k is sufficiently large must have t,he form 

aij = a$;) + a$) - a23 (.?). (5.28) 

Here a$$) is the complementary function (to be discussed later) arising from the 
boundary condj tions and 

4:) = fl(% Y1) exp (irxlx’ + X 2 Y ’ l } ,  4 7 )  = f 2 ( %  y1) exp { i [ K 1 X ’  + K 2 Y ’ l ) .  

These two solutions correspond to the two components of Q, given by (5.32). 
Inspection of (4.2) and (5.27) then shows that a$:) = 0, and if 

(5.29) 

exp {i[xl(x  + A,) + K ~ ( Y -  A,)]} -$exp { ~ [ K ~ X  + K~ y]} ,  (5.30) Yij u.. = - 
23 x2 

where 

X 2  = XT+Xt++! ,  K3 = X 3 ,  X 2  = K ~ ( V T ) 2 + K 2 2 ( V y ) 2 + 2 K 1 K 2 ( V ~ . V T ) + K ~ .  

This is the soIution to (4.2) used by Batchelor & Proudman (1954). It satisfies 
(4.3a) and from it ail can be calculated; we find 

ail = a:?) + a$?) + a$!), 

a(@ iz - - i % j k { ( X j / X 2 )  Ykl exp +1[X + AT1 + K2[Y -A,]>>, 

a$.) = 0, 

where (6.31) 

a$) = ieijk(- ( K ~ & ~ / E ~ )  exp [ ~ ( K ~ X + K ~ ~ ) ] } .  

Its  limitation is that k-I must be small compared with the distance over which the 
mean flow changes (i.e. (5.29) must be satisfied). This condition is violated near 
the body, where also the boundary condition ( 4 . 3 ~ )  must be satisfied, so t,hat we 
must consider a new solution for this region of the flow. 

Stream function aij near the body. To find E~~ near the surface of the body, we 
use the Green function solution t o  (4.2) re-expressed in terms of local Cartesian 
co-ordinates ( 5 , ~ )  in the ( r ,  8 )  directions, where 5 = 0 on r = 1 and = 0 at some 
value of 8 = O1. Then at  a point (El, rl) 
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where px = (EX2 + 7X2)Q, [X = [-El and q x  = q - ql and the limits X and Y must 
satisfy the condition k - l +  X ,  Y < 1. In  finding a$$) near T = I, we have to ensure 
that the condition (4.3a) is satisfied, which implies that, since 

a Q i j l a X i  = h K j ,  

a +- arl [n,K,(lK31P~)ld7) @ - - h x K j ,  

where h and Ax are scalars in K~ space. Thence ( 4 . 3 ~ ~ )  is satisfied provided that a 
fictional Qij is invented inside the body such that the normal component !& 
of bij is continuous across E = 0 in the sense 

To find Qij as c -+ 0, we first need to know AT and Au. From (5.2) and (5.3), 
as 5 -+ 0, 

} (5.33) 
y-AV = 25sin19, 

A, + x - - +ln 6 -In sin $0 - (1 - 4 In 2) + it( I + 4 cos 8). 

The simplest method of specifying aij when = Qlj( - E), 
so that by continuity fi2,(() = - <), and fi3&) = - b,j( - 5). (Note that the 
solution for 5 > 0 will be unique when all the conditions are satisfied.) Thus when 

rij - fijexp [i{ - K 1 ( h  $151 +In Isin 481 + A  - $151 (4cosB + 1)) + k 2 1 C 1  sinO)], 

where yij - 2sin8 + ~ ( 4 c o s e + i ) - i p g  :] for E<o, 

< 0 is to assume 

151 3 0, 
N 

(5.34) 
2161~0~0 IlJsin8+(1-]c1)(1+cos8)/2sin0 

[ o  0 +1  

and 

To demonstrate the irregular oscillations of Qj when 8 = 7~ and 0 $: ;TT, graphs 
of P2, are shown in figure 5 ( b )  and graphs of in figures 5 (c )  and (d). Their 
physicalinterpretationis left to 3 5.3.3. 

A = I-- : In 2, f$y) = ymij exp [i( 1 + <) ( K ~  cos 6 + K~ sin @]. 

Considering the two components of di,,, given by (5.28), then as in (5.30) 

&$) = - (ymij/kz) exp [i( 1 + El) ( K ~  cos 8 + K~ sin e)]. (5.35) 

Substituting Pi, into the integrand of (5.32), we can find a\$). If j7&, 0) is ex- 
panded as a Taylor series in 7 = 6 - 0, near any value of @,, then at (&, ql) &it) is 
given to the lowest order by 
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B(0,) = expi[-q{ln Isin+8,1 + A ) ] ,  

gl(Oo) = 2~~ sin Oo + &cl(4 cos 8, + I ) ,  

657 

where 

22(8,) = 151 az,/ae - $4 cot +so, 
r X  = 7-71, CX = 6-51. 

Taking the integral with respect to 7, and using the result of Erdblyi, Magnus & 
Oberhettinger (1954, p. 56) 

exP {iL(O 71 -&I5 - CSiII 
i?23(t, 

y exP{~22Wo{IK3l [(r-r1)2+~x2141d7 = 
-a 

where 2 2 3  = @(5, O O )  + K,213, 
we find aX'(511 r1) = B(Q.exp{- a i K 1 7 1 C O t + ~ * ) ~ i s ( 5 , , 7 1 ) ,  (5.37) 
where 

x exP{- 15-6 1 1 -  x 2 3  I] d5* (5*38) 

The integral I.&, ql) has to be considered carefully when 5 --f 0 and Ic +- co, 
but the following analytical expressions can be obtained when 

kg < 1, I% 9 1,  Kl (f;+z:3)*. (5.39) 

Of course when kk 9 1 and k B 1, (5.37) reduces to the expression for #)in (5.30). 
Given the condition (5.39), the physical and practical implication of which will be 
discussed in $6, it  follows that (5.38) may be simplified to 

&j(519 71) = ( L i j  + IBij  + 476j)/?t23(0, O"), (5.40a) 

where rn is an integer and 9(p t )  > 0. Thence, by splitting IAii into an infinite 
and a finite integral, using the assumptions (5.39), and adding all the inkgrals 
we obtain the following expressions for I& (&, ql): 

42 F L M  61 
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where 

p ,  ,E+ = 2 exp { rt $}, ;t; = ( i i3  +,y:)&, 4 = tan-1 (X;1//1723) (in 3 $ -in). 
(5.42) 

2, can be positive or negative but 2 2 3  2 0. Note that because 12,, I,, and I,, = 0 
on t1 = 0, the boundary condition (4.3b) is now satisfied for a$$). Subject to the 
conditions (5.39), it can be shown that the complete expression for a$$) does now 
satisfy (4.2) and also the condition (4.3a).  

Since a$') does not satisfy (4.3c), a complementary function to (4.2) has to be 
found, a$?), such that a$;) +a$;) does satisfy the Condition that u . n = 0 on the 
surface of the body. 

Gathering all the results together we find that near the body, subject to (5.39), 

(5.43) 
Eli is given by 

where 
aii = a$) + a$?) +a(.?) a? 2 

a$$) = B(8,) exp { - & i ~ ~ y ~  cot go,) 
- ik, cot (&So) 133 I' + iK3 112 - a133/a61 

0 

1 - K~ sin 8 K~ cos 0 - (K ,  cos 8 - rcl sin 8) 
- ~ ~ s i n B  ~ , c o s B + ~ ~ s i n B  , 

-K1  0 

exp { i ( ~ ~  cos 6 + K~ sin 0) - &} 
k2 

&) = 
t J  

where 
1 i ~ ,  sin 8 - k3 cos 6 ix, 

( K ~ x ~ / & )  sin 8 - (K~x,/&) cos 8 z2/k2 , 
( i~f /E)  sin 0 i (X3/k)  00s 6 iK,X2/k2 

K", = - K , S ~ ~ ~ + K ~ C O S ~ ,  E 2  = K : + x ~ .  
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Mi?) can now be calculated from (5.31) or (5.43) using its definition in (4.32). 
To calculate 2Mg) when k 1, we recalculate the solution to (4.22), rather than 

use the asymptotic form of the Fourier series solution (4.26) and (4.27). The 
boundary conditions (4.23) for at a point (T = I ,@)  can be expressed in terms 
of the distance 7 = 8 - 8, from a point O,, so that on r = 1, 

ap,/ar = (cos 8,, sin O,, 0)  exp { i ( ~ ,  cos 8, + K~ sin O,)} exp (iX27}. 

Thence the solution to (4.22) for pi is 

/3&, 6 )  = - &-l (cos 8, sin 8 , O )  exp {i@, cos 8 + K2sin 8) -it), 

where R, and ,& are defined in (5.43). From its definition in (4.29), 

-sine 1 
- cos 8 

it@) = (iz2/&) cos O - (i~,/&) sin 8 o exp {i(~, cos 8 + K~ sin 8) - &). (5.44) [ ( i ~ ~ / & )  cos 8 (i~~/,f2) sin 8 o 
Clearly 

The complete expression for Mil defined by (4.32), when k: 9 I ,  can now be 
found from (5.31) or (5.43) and (5.44). When k:E = O ( l ) ,  the expression is too 
lengthy to be comprehended, but when k< 9 1, we can ignore M$) and we find 
that 

is exponentially small when k< 9 1. 

Mi, = - elmneijk r y e x p  { i [ K 1 ( 2  + A,) + 4 9  - A2/)]} 

’ K K  
eXp (i(K1X -/- Kzy)) -k sin exp ( i ( K 1 Z  + KzY)}, (5.45 a )  

where xi and x are defined in (5.27) and (5.30). Contracting the tensors and using 
the result from the continuity equation that = 0, so that any term like 
A K ~ K ,  gives no contribution to Gi, we find 

1 -- 
k2 

Nin = - €lmn€i’iikK,XjY~~eXP{iCKl(X +A,) + K ~ ( Y  -A,)I)/x~. (5-453) 

Some special cases are given below, and will be used in 5 6 to calculate spectra 

Consider the case of N,, when K, = 0. Then the integral (5.38) can be performed 
etc., and used in $5.3.3 to discuss the physical meaning of the results. 

exactly, whence on 8 = n-, if 5 < 1, 

and 
( 5 . 4 6 ~ )  

where f ( b )  = ebEl(b) + e-bEi(b), E,(b) and E,(b) being exponential integrals (see 
Abramowitz & Stegun 1964, p. 228). The expression agrees with that derived 
from (5.41) and (5.42), given the properties of I?( - 3 i ~ ~ )  as K, +- 0. We find that, 
as kl -+ 0, 

Mll N - &c3 5 [In ( K ~  5) + y - 1 + . . .I, (5.46 b )  

but as k:l+ 00, M,, N l/(25) = l/Ul, in agreement with (5 .45a) .  
42-2 
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It is interesting to caIculate B2,(, = 1,8), a component of velocity parallel 
to the surface at the surface. We find 

B2% = iexp { ~ [ K , { I  - +In 2 -In (sin +O) + +In%) + $1) exp { * K ~  $} I'( 1 - + k l ) / , V  

't (5.47) 1 i ~ i  ( I  + cos 1 9 ) / 2 2 ~ ~  sin 8 + K~ 

K 1  

- ~ K ~ K ~ (  1 + cos O)/2,f2, sin 8 

where q5 = tan-l (;t1/&), zl = 2~~ sin 8 + t ~ ~ ( 4  cos 8 + l), 

z23 = [ $ ( K ~ + K ~ C O t 2 ~ 8 ) ] * ,  2 = (zi3+.v$. 
Thus on 0 = T, ;tl < 0 and therefore, since 

1 - 2  i; i~+ex;>;fn~,) exp { -i(&Kl(ln &K1 - 1)  +in)} as K~ + 00, (5.48) 

B2n = O ( K t e - h )  on e = n as K~ -+ 00. (5.49) 

Thus an exponential ' cut-off ' occurs as K~ increases, which has significant 
practical consequences, to be seen later. This ' cut-off ' also applies to &, and 

For pressure calculations and comparison with the computed solutions it 
1 written out from 

JZ3n- 

is useful to have the full expression for iff,, on 6' = n- when k [  
( 5 . 4 5 ~ 1 )  (before contraction). We find 

where x 2  = Kt/UuZ,+K2, UZ, + K:,  k2 = K,K{ and U, = 1 - l / r 2 .  Thus when r + co, 
illi, + S i n e i K i x  as demanded by the boundary conditions. When r 3 1 and 
K~ = 0, (5 .50)  matches with (5.46) because as K ~ [  -+ co, 

Mll N 2/E = l/Ul. 

5.3. Discussion of solution for Ma 
Before calculating the velocity spectra in $6, it is appropriate at this stage tlo 
consider various aspects of our results for Mil; first, the validity of the solutions 
and whether they are consistent with the original assumptions, of $2;  second, 
a comparison between the computed and asymptotic solutions; and third, the 
interesting features of the results and their physical explanation. 

t On 0 = 7r in the particular limit K~ + CO, K* --f 0,  K~ + 0 the expression (5.47) for G2* 
is singular and is invalid. The reason is that the approximation in (5.40a) that 
j&&, 8,) = Rz8(0, 0,) is always valid if (5.39) is satisfied, except in this particular limit. 
Whon this approximation is not valid, the integral (5.38) must be evaluated numerically. 
But we can deduce that for the particular case K~ = K~ = 0, M,,  = O(K$). 

- 



A theory of turbulent flow round two-dimensional bluff bodies 66 1 

5.3.1. Validity of the solutions. Given the artificial nature of the boundary 
conditions to the mathematical problem (2.4) and (2.5), which will be discussed 
in $7.2, the most important question about the mathematical validity of the 
solution is whether the nonlinear inertial terms and viscous terms omitted from 
(2.17) and (2.19) are in fact negligible. Consider first the effect of nonlinear terms 
in (2.17) on the mean velocity and vorticity in (2.17). 

(u . V) o, which, as shown by the results 
for small-scale turbulence in $5.2, becomes at a distance 6 from the surface 
of order P2/Ez. Therefore a, becomes O(,P/[), so that when 5 = O(pz) the 
solution (2.18) and the assumption in (2.19) that rR = 0 are both invalidated. 
However, if 0, = O(pz/g) as E-+ 0, then from (2.4) U, = O( -pa lno .  These 
changes in P and U bring new terms into (2.19) like Q, au/ay, of O(pz(a/Z) [-I), and 
U, 8o/az ,  of O(pz(a/Z) t-llnc). In  deriving (2.19) turbulent nonlinear terms like 
(w . V) u were assumed to be small everywhere. Consider the order of magnitude 
of this term near the surface of the body as 5 + 0, when alZ 1. It is difficult to 
estimate, even given the r.m.s. values of u, but it is unlikely that the largest term 
(w,a/ay) u is greater than O[pf-l(a/Z)]. Compare this with the order of magnitude 
of the linear terms in (2.19) as 5 -+ 0; when K~ = O(l), D6,lDt and D6,lDt 
are O(a2/Z2) and DB,/Dt is O((a/Z) 6-l); when K~ 9 1, DOl/Dt and DB,/Dt are 
O(q(a/Z)) and DO,/Dt is O ( ~ ~ 5 - l ) .  Thus as --f 0 for K~ = O(a/Z), IDw/Dtl calcu- 
lated from (2.19) is O([-l(a/Z)), whereas the magnitude of the largest nonlinear 
terms which have been neglected is O(pc-l(a/l)). Therefore, since we assume 
p << 1, the nonlinear effects do not become dominant near the body. The reason 
for this surprising result is that although the potential solution has the property 
n ,U-+Oast-+O, dU,/ayremainsO(l), andthereforedespitethefactthat IuI 9 JUI 
in this region, the stretching of the vortex lines by the mean velocity continues 
to be O(p-l) greater than the stretching by the turbulent velocity. However, the 
equations for two components of o in (2.19) contain nonlinear terms which 
cannot be ignored as < -f 0, so that our results for w1 and Q~ in (3.10) are only 
valid as 5 + 0 for K~ = O( 1) if 5 9 a and for K~ % 1 if 5 9 P K F ~ .  It is not clear how 
these errors in Bl and 0, affects the validity of our results for Sln and aZn for 
small-scale turbulence as 6 --f 0. Since the body B3n is Iargely determined by the 
amplification of O,, our expressions for i@3n should be correct as 6 + 0 provided 
that p < 1. For scales of turbulence comparable or larger than the size of the 
body the analysis is valid as 5 -+ 0 provided that the original conditions (2.7)- 
(2.10) are satisfied. 

The viscous terms were examined in terms of the r.m.s. values of the vorticity 
in $2, but now that it is known how the Fourier components of w vary, i t  is pos- 
sible to be more precise in our criteria for neglecting these terms. From the 
Fourier transform of wy given by (4.2), we see that the viscous term Re-l Po,/az2 
is O(Re-l/g3) if K~ is O(l), but is o(Re-1~g/[3) if K~ $ 1. Thence by comparing with 
the term (w . V) U it follows that the viscous terms are only negligible if 

The largest inertial term omitted is 

5 $ R e d ,  when K~ = O(1) or K~ < 1, (5.52a) 

9 KiRe-3 ,  when K~ B 1. (5.52b) 
and if 
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Equation ( 5 . 5 2 ~ )  implies that if the turbulence has an integral scale of order a 
over most of the wavenumber range, the theoretical solutions for Mi, should be 
valid right up to the stagnation-point boundary layer. On the other hand, for 
very small-scale turbulence or high wavenumbers, the region of validity does not 
extend as far as this boundary layer. Both these results imply that as Re -+ co 
the range of validity of the solution comes closer to the body. 

Less fundamental questions concern the range of validity in wavenumber 
space of the computed and asymptotic solutions. The computed solution de- 
scribed in $§4.1 and 4.3 has two main limitations. (i) When K~ 3 0 and r = O( 1) 
there should be a contribution to integrals like (4.10) from the region where 
r > I ,  and therefore, since Qij is assumed to be zero for r > 10 the value of aij and 
therefore Mid,, must be incorrect for K~ 5 0.1. But Mfd is correct as K~ --f 0, and 
since Mi:) = O ( k )  as k 3 0, computed solutions for Ni, should be correct to a good 
approximation. (ii) When K ~ ,  K~ B 1, then the representation of Oij and Pj as 
finite Fourier series with n < 20 becomes inaccurate. Thus our particular com- 
putations for Mi, should be valid when K ~ ,  K~ 5 3. The asymptotic solution for 
Mi, when k [  < 1 and E < 1 is, as stated in (5.39), only valid when K~ < 2. This 
limitation is not, in fact, serious because when Oi, is evaluated, in $6, it will be 
found that this is the only range of wavenumber space of interest. 

5.3.2. Comparison with computed solutions. In tables 1 and 2 the computed 
results for Mi, are tabulated alongside values obtained from the asymptotic 
expressions for Mi, in $§5.1.1 and 5.2.1. In  the case where k @ 1, Mi, is valid to 
O(k2 In k). The three components of Mi, have been grouped as Mi$ and 

in order to show how the relative magnitudes of these components vary as k 
increases. Detailed examination shows that, when k < 1, the small differences 
between the computed and asymptotic values of Mi, are attributable to the 
differences in Mi:) caused by the truncation of the computed integrals, as de- 
scribed in $5.3.1. The general conclusion to be drawn from these tables is that 
the asymptotic and computed solutions have the same qualitative trends as 
K and ( r , @  vary, and also give results which are approximately equal when 
k 5 0.3 or k 2 3.0. This implies that gross arithmetic or analytical errors have 
probably been avoided in the various solutions. It also implies that, in the region 
of wavenumber space where 3.0 2 k 2 0-3 and where the asymptotic theory is 
not valid, the computed solutions should be fairly reliable. 

5.3.3. Physical implications. We now attempt to find some physical meaning 
from all our computation and analysis, and begin by showing in figures 6 (a)-(d) 
how Mi, varies along a radius a t  0 = n and 6 = 3n, when k -4 1, lc - 1 and k % 1, 
using the results of $8 5.1.1 and 5.2.1. In  the case k 9 1, the choice K~ = K~ = 0 is 
made to avoid the rapid oscillation in Mi%, and because this part of the spectrum is 
of greatest interest. 

Figures 6 (a) and ( b )  show how for low wavenumbers of the turbulence, along 
the stagnation line, MI, decreases to zero and M,, increases to twice its incident 
value. M& in fact remains constant. On the other hand, for high wavenumbers, 
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(a) K1 = K2 = 0.1, F = 1.1 

Computed 
c 

Ks = 0.1 MIP,' 

i , n  = 1, l  0.00, 0.00 
1, 2 0.00, 0.00 
1, 3 0.00, 0.00 
2, 1 0.01, -0.05 
2, 2 -0.02, 0.05 
2, 3 0.02, 0.00 

h 

MY: + Mi:' 

0.17, -0.03 
0.00, 0.01 
0.00, 0.00 
0.00, -0.04 
1.80, -0.15 
0.00, 0.00 

7 

Mi, 

0.17, -0.03 
0.00, 0.01 
0.00, 0.00 
0.00, -0.09 
1.77, -0.06 
0-02, 0.00 

Asymptotic 
Mtn(k + 0)  

0.17, -0.03 
0.00, 0.01 
0.00, 0.00 
0.03, -0.13 
1.77, -0.06 
0.00, 0.00 

= 0.3 
1, 1 0.01, 0.00 0.17, -0.03 0.18, -0.02 0.16, -0.03 
1, 2 0.00, 0.00 0.00, 0.01 0.00, 0.01 0.00, 0.01 
1, 3 0.00, 0.00 0.00, 0.00 0.00, 0.00 o-oo, 0.00 
2, 1 0.00, -0.05 -0.00, -0.04 0.01, -0.09 0.00, -0.13 
2, 2 -0.10, 0.07 1.71, -0.15 1.61, -0.09 1.70, -0.06 
2 ,  3 0.03, -0.01 0.00, 0.00 0.03, -0.01 0.00, 0.00 

K3 = 1.0 
1, 1 0.09, 0.01 0.19, -0.03 0.26, -0.02 
1, 2 0.00, 0.00 0.00, 0.00 0.00, 0.00 
1, 3 0.01, 0.00 0.00, 0.00 -0.01, 0.00 
2, 1 0.00, -0.04 0.00, -0.03 0.00, -0.07 
2, 2 -0.36, 0.10 1.45, -0.14 1.08, -0.04 
2, 3 0.04, -0.01 0.00, 0.00 0.04, -0.01 

K3 = 1.6 Min (k + ~ 0 ,  kE < 1) 
1, 1 0.20, 0.02 0.22, -0.03, 0.42, -0.02 0.40, 0.00 
1, 2 0.00, 0.00 0.00, 0.004 0.00, 0.00 0.00, 0.00 
1, 3 -0.01, 0.00 0.00, 0.00 -0.01, 0.00 0.02, 0.00 
2, 1 0.00, -0.03 0.00, -0.03 0.00, -0.05 0.00, 0.00 
2, 2 -0.49, 0.11 1.32, -0.14 0.83, -0.02 1.24, -0.01 
2, 3 0.03, -0.01 0.00, 0.00 0.03, -0.01 -0.02, 0.00 

K~ = 3.0 
1, 1 0.56, 0.04 0.31, -0.04 0.87, 0.00 0.92, 0.02 
1, 2 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 
1, 3 -0.02, 0.00 0.00, 0.00 -0.02, 0.00 -0.02, 0.00 
2, 1. 0.00, -0-01 0.00, -0.02 0.00, -0.03 0.00, -0-02 

2, 3 0.02, o-oo 0.00, 0.00 0.02, 0.00 0.01, 0.00 
2, 2 -0.64, 0.12 1.17, -0.13 0.53, 0.00 0.67, -0.03 

KB = 5.0 
1, 1 1.14, 0.09 0.43, -0.05 1.57, 0.03 1-67, 0-06 
1, 2 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 
1, 3 -0.02, 0.00 0.00, 0.00 -0.02, 0.00 -0.03, 0.00 
2, 1 0.00, -0.01 0.00, -0.01 0.00, -0-02 0.00, -0.01 
2, 2 -0.72, 0.12 1.09, -0.12 0.37, 0.00 0.40, 0.00 
2, 3 0.01, o-oo 0.00, 0.00 0.01, 0.00 0.01, 0.00 

TABLE 1 (a). For legend see page 665. 
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TABLE l ( b ) .  For legend see page 665. 

00.0 ‘TO.0 
TT.0- ‘PL.0 
00.0 ‘00.0 
00.0 ‘TO.0- 
00.0 ‘00.0 
6T.0- ‘ZE*T 

00.0 ‘00.0 
TT.0- ‘PL.0 
00.0 ‘00.0 
00.0 ‘TO.0- 
00.0 ‘00.0 
6T.0- ‘ZI.1 

00.0 ‘TO-0 
TT.0- ‘PL.0 
00.0 ‘00.0 
00.0 ‘zo.0- 
00.0 ‘00.0 
61.0- ‘T€*T 

(I G IjEy ‘a -+ 9)u?w 

00.0 ‘00.0 
9T.0- ‘FT.1 
90.0- ‘TO.0 
00.0 ‘00.0 
ZO.0 90.0 
LT.0- ‘69.0 

00.0 ‘00.0 
91.0- ‘T2.T 
90.0- ‘ZO.0 
00.0 ‘00.0 
ZO.0 ‘TO-0 
LT.0- ‘EL.0 

(0 +- Y) “W 
oqo+druSs~ 

00.0 ‘T0.0 
TT.0- ’PL-0 
00.0 ‘00.0 
00.0 ‘T0.0- 
TO.0 ‘00.0 
0Z.O- ‘8E.T 

00.0 ‘10.0 
TT.0- ‘9L.O 
10.0- ’00.0 
00.0 ‘TO.0- 
00.0 ‘00.0 
6T.O- ‘IF-T 

00.0 ‘10.0 
ZT.0- ‘08.0 
TO.0- ‘00.0- 
00.0 ‘zo.0- 
00.0 ‘00.0 
LT.0- ‘E1.T 

TO.0- ‘20.0 
PT.0- ‘88.0 
20.0- ‘OO*O 
00.0 ‘ZO.0 
00.0 ‘00.0 
LT.0’ ‘96.0 

00.0 ‘zo.0 
91.0- ‘ZT-T 
P0.0- ‘00~0 
00.0 ‘T0.0- 
10.0 ‘00.0 
9T-0- ‘9L.O 

00.0 ‘10.0 
LT.0- ‘TZ*T 
80.0- ‘00.0 
00.0 ‘00-0 
zo.0 ‘TOO0 
LT.0- ‘EL.0 

‘?MT 

00.0 ‘00.0 
OZ.0- ‘86.0 
00.0 ‘00.0 
00.0 ‘00.0 
00.0 ‘00.0 
0Z.O- ‘86-0 

00.0 ‘00.0 
OZ.0- ‘66.0 
00.0 ‘00.0 
00.0 ‘00.0 
00.0 ‘00.0 
OZ-0- ‘96.0 

00.0 ‘00-0 
02.0- ‘T0.T 
oo.o+ ‘00.0 
00.0 ‘00.0 
00.0 ‘00.0 
6T.O- ‘L8-0 

00.0 ‘00.0 
zo.0- ‘90.1 
00.0 ‘00.0 
00.0 ‘00.0 
10.0 ‘00.0 
8T.0- ‘08.0 

00.0 ‘00.0 
02.0- ‘L1.T 
10.0- ‘00.0 
00.0 ‘00.0 
zo.0 ‘00.0 
LT.0- ‘EL.0 

00.0 ‘00.0 
0z.o- ‘zz-T 
TO.0- ‘00.0 
00.0 ‘00.0 
z0.0 ‘00.0 
LT.0- ‘EL.0 

,;w+gm 

00.0 ‘10.0 
60.0 ‘PZ.0- 
00.0 ‘00.0 
00.0 ‘10.0- 
TO.0 ‘00.0 
TO.0- ‘0P.O 

00.0 ‘TO-0 
60.0 ‘PZ.0- 
TO.0- ‘00.0 
00.0 ‘TO.0- 
00.0 ‘00.0 
10.0 ‘9€-0 

00.0 ‘10.0 
80.0 ‘TZ.0- 

ZTO.0- ‘00.0 
00.0 ‘20.0- 
10.0- ‘00.0 
zo-0 ‘92.0 

10.0- ‘ZO-0 
L0.0 ‘LT.0- 
ZO.0- ‘00.0 
00.0 ‘ZO.0- 
10.0- ‘00.0 
20.0 ‘9T.0 

00.0 ‘ZO-0 
PO.0 ‘90.0- 
€0.0- ‘00.0 
00.0 ‘TO-0- 
00.0 ‘00.0 
TO.0 ‘z0.0 

zo.0- 70.0 
€0.0 ‘10.0- 
€0.0- ‘00.0 
00.0 ‘00-0 
00.0 ‘TO.0 
00.0 ‘00.0 

ZW 

g ‘z 
2 ‘Z 
T ‘z 
E ‘T 
z ‘T 
I ‘I 

0.g = $3 

E ‘z 
z ‘2 
T ‘z 
E ‘I 
z ‘T 
T ‘T 

0.g = 5 

E ‘z 
2 ‘Z 
T ‘Z 
E ‘1 
z ‘1 
T ‘T 

9.1 = 5f 

€ ‘Z 
z ‘i: 
1 ‘2 
I: ‘T 
r ‘1 
T ‘T 

0.1 = ex 

E ‘Z 
z ‘z 
T ‘z 
F ‘T 
2 ‘T 
T ‘T 

€0.0 = 5 

F ‘z 
z (z 
T ‘z 
F ‘T 
z ‘T 

T.0 = 5f 
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(c) Kl = K2 = 1.0, ,r = 1-1, 0 = 7r 

Computed 
A 

I > 
Mi:' 

0.04, 0.03 

-0.01, 0.00 
-0.02, -0.79 

0.02, 0.79 
-0.01, -0.01 

-0.04, -0.03 

0.14, 0.07 
-0.04, -0.04 
-0.10, -0.03 
-0.05, -0.59 

0.09, 0.82 
-0.04, -0.23 

0.62, 0.33 
-0.02, -0.03 
-0.20, -0.10 

0.03, -0.28 
-0.04, 0.98 
-0.03, -0.23 

M:: + M;:) 

0.00, -0.20 
0.03, 0-05 
0.00, 0.00 

-0.31, -0.24 
0.90, -0.17 
0.00, 0.00 

0.01, -0.23 
0.03, 0-03 
0.00, 0.00 

-0.23, -0.19 
0.71, -1.12 
0.00, 0.00 

0.08, -0.32 
0.01, 0.01 
0.00, 0.00 

-0.12, -0.09 
0.55, -1.01 
0.00, 0.00 

Mi, 
0.04, -0.17 

-0.01, 0.02 
-0.01, 0.00 
-0.33, - 1.03 

0.93, -0.28 
-0.01, -0.01 

0.15, -0.16 
-0.01, -0.01 
-0.01, -0.03 
-0.27, -0.78 

0.80, -0.30 
-0.04, -0.23 

0.70, $0.01 
-0.01, -0.02 
-0.02, -0.10 
-0.09, -0.37 
0.51, -0.04 

-0.04, -0.23 

0.20, -0.02 
-0.19, 0.02 
-0.03, 0.03 
-0.40, -0.10 

0.40, 0.10 
-0.21, 0.36 

0.36, -0.13 
-0.17, -0.02 
-0.19, 0.15 
-0.33, -0.05 

0.44, 0.99 
-0.12, -0.04 

0.58, -0.30 
-0.07, -0.04 
-0.17, 0.11 
-0.14, -0.03 
0.50, 0.13 

-0.12, -0.04 

-0.58, -0.67 
0.04, 0.14 
0.00, 0.00 

-0.06, -0.04 
-0.28, -0.95 

0.00, 0.00 

-0.52, -0.78 
0.03, 0.05 
0.00, 0.00 

-0.02, -0.02 
-0.38, -0.93 

0.00, 0.00 

-0.43, -0.89 
0.00, 0.00 
0.00, 0.00 
0.00, 0.00 

-0.41, -0.91 
0.00, 0.00 

-0.36, -0.69 
-0.15, 0.15 
-0.03, 0.03 
-0.46, -0-15 

0.12, -0.85 
-0.21, 0.36 

-0.16, -0.91 
-0.14, 0.03 
-0.19, 0.15 
-0.32, -0.08 

0.09, -0.85 
-0.12, -0.04 

0.15, -1.19 
-0.06, -0.03 
-0.17, 0.11 
-0.14, 0.02 

0.08, -0.78 
-0.12, -0.04 

Asymptotic 
Mi,(k+m, kE Q 1) 

-0.02, -0.06 
-0.02, -0.06 
-0.01, 0-00 
- 1.32, - 0.85 

0.95, -0.49 
0.69 -0.43 

0.11, -0.08 - 0.01, - 0.05 
-0.12, -0.03 
-0.73, -0.80 

0.32, -0.76 
0.35, 0.34 

0.71, 0.12 
0.01, -0.03 

-0.22, -0.13 
-0.09, -0.29 

0.50, -0.26 
-0.05, -0.16 

MJk -+ a, I% 9 11 
-0.17, -0.77 
-0.25, -0.14 
-0.03, 0.01 
-0.28, 0.11 
-0.14, - 1.02 
-0.02, -0.01 

-0.06, -0.92 
-0.17, -0.08 
-0.19, 0.09 
-0.19, 0.09 
-0.06 -0.92 
-0.17, -0.08 

0.10, -1.20 
-0 .05,  -0.02 
-0.16, 0.10 
-0.05, 0.03 

0.05, -0.79 
-0.14, -0.05 

TABLE 1. A comparison of computed and asymptotic values for Min at 0 = 7r. 
The two numbers for Mi, at each value of ( K ~ ,  K ~ ,  KJ are the real and imaginary parts. 
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(a)  K1 = Ka = 0.1; I' = 1.1 

Computed 
A r 7 

MI:) 

-0.01, -0.03 
0.00, 0.03 
0.01, 0.00 

-0.01, -0.03 
0.00, 0.03 
0.01, 0.00 

-0.02, -0.03 
-0.04, 0.03 

0.02, 0.00 
-0.03, -0.03 
-0.05, 0.04 

0.03, 0.00 

-0.06, -0.01 
-0.19, 0.03 

0.02, 0.00 
-0.19, -0.02 
-0.18, 0.03 

0.04, 0.00 

-0.04, 0.00 
-0.27, 0.02 

0.02, 0.00 
-00-33, -0.02 
-0.23, 0.03 

0.03, 0.00 

0.13, 0.03 
-0.38, 0.01 
0.01, 000 

-0.64, -0.02 
-0.26, 0.02 

0.03, 0.00 

0.50, 0.07 
-0.48, 0.00 

0.00, 0.00 
- 1.07, - 0.05 
-0.25, 0.02 

0-03, 0.00 

M(d+M(rn, 

0.99, -002 
0.81, 0.03 
0.00, 0.00 
0.81, -0.03 
0.99, 0.02 
0.00, 0.00 

t n  m 

0.94, -0.02 
0-77, 0.03 
0.00, o-oo 
0.77, -0.03 

0.00, 0.00 
0.94, 0-02 

0.82, -0.02 
0.63, 0-02 
0.00, 0.00 
0.63, -0.02 
0.82, 0.02 
0.00, 0.00 

0.77, -0.01 
0.55, 0.02 
0.00, 0.00 
0.55, -0.02 
0-77, 0.01 
0.00, 0.00 

0.74, -0.01 
0.43, 0.01 
0.00, 0.00 
0.43, -0.01 
0-74, 0.01 
o-oo, 0.00 

0.76, 0.00 
0.33, 0.01 
0.00, 0.00 
0.33, -0.01 
0.76, 0.00 
0.00, 0.00 

Mi, 
0.98, -0.05 
0.81, 0.06 
0.01, 0.00 
0.81, -0.06 
0.98, 0.05 
0.01, 0.00 

0.92, -0.05 
0-73, 0.07 
0.02, 0.00 
0.74, -0.06 
0.09, 0.06 
0.03, 0.00 

0.76, -0.03 
0.44, 0.05 
0.02, 0.00 
0-45, 0.04 
0.54, 0.05 
0.03, 0.00 

0.73, -0.01 
0.28, 0.04 
0-02, 0.00 
0.22, -0.04 
0-55, 0.04 
0.03, 0.00 

0.87, 0.02, 
0.05, 0.02 
0.01, 0.00 

-0.20, -0.04 
0.48, 0.03 
0.03, 0.00 

1-27, 0.06 
-0.15, 0.00 

0.00, 0.00 
-0.74, -0.06 

0.41, 0-03 
0.03, 0.00 

Asymptotic 
Mi,  (k + 0) 

0.99, -0.09 
0.81, 0.10 
0.00, 0.00 
0.82, -0.10 
0.99, 0.09 
0.00, 0.00 

0.94, -0.09 
0.78, 0.10 
0.00, 0.00 
0.78, -0.10 
0.94, 0.09 
0-00, 0.00 

Mi, (k +a, kE 9 1 )  
0.54, -0.01 
0-48, 0.00 
0.00, 0.00 
0.04, -0.04 
0.77, 0.01. 
0.01, 0.00 

0.88, 0.04 
0.08, -0.02 
0.00, 0.00 

-0.32, -0.04 
0.59, 0.01 
0.02, 0.00 

1.36, 0.10 
-0.17, -0.02 

0.00, 0.00 

0.57, 0.02 
0-03, 0.00 

-0.84, -0.08 

TABLE 2(a).  For legend see page 669. 



A theory of turbulent flow round two-dimensional bluff bodies 667 

Computed 
A > Asymptotic 

M;$ 

-0.01, -0.02 
0.01, 0.02 
0.01, 0.00 

-0.01, -0.02 
-0.01, 0.02 

0.01, 0.00 

-0.01, -0.01 
-0.02, 0.01 

0.01, 0.00 
-0.03, -0.02 
-0.03, 0.02 

0.02, 0.00 

0.03, -0.01 
-0.12, 0.01 

0.01, 0.00 
-0.17, -0.01 
-0.05, 0.02 

0.02, 0.00 

0.10, 0.00 
-0.24, 0.00 

0.00, 0.00 
-0.33, 0.00 
-0.01, 0.01 

0.01, 0.00 

0.11, 0.00 
-0.28, 0.01 

0.00, 0.00 
-0.34, 0.00 

0.02, 0.00 
0.01, 0.00 

N(8) + &J(,oO) 
fm tn 

0.99, 0.01 
0.24, 0.02 
0.00, 0.00 
0.24, -0.02 
0.99, -0.01 
0.00, 0.00 

0-97, 0.01 
0.22, 0.02 
0.00, 0.00 
0.22, -0.01 
0.97, -0.01 
0.00, a-oo 

0.94, 0.00 
0.12, 0.01 
0.00, 0.00 
0.12, -0.01 
0.94, 0-00 
0.00, 0.00 

0.99, 0.00 
0.02, 0.00 
0.00, 0.00 
0.02, 0.00 
0.99, 0.00 
0.00, 0.00 

1.00, 0.00 
0.00, 0.00 
0.00, 0.00 
0.00, 0.00 
1.00, 0.00 
0.00, 0.00 

Min  M,, (k + 0) 
0.98, 0.01 0.98, -0.03 
0.25, 0.03 0.24, 0.05 
0.00, 0.00 0.00, 0.00 
0.24, -0.04 0.26, -0.05 
0.99, 0.01 0.98, 0.03 
0.01, 0.00 0.00, 0.00 

0.96, -0.01 0.94, -0.03 
0.20, 0.03 0.23, 0.05 
0.01, 0.00 0.00, 0.00 
0.19, -0.03 0.24, -0.05 
0.94, 0.02 0.94, 0.03 
0.02, 0.00 0.00, 0.00 

0.97, 0.00 
0.00, 0.01 
0.01, 0.00 

-0.05, -0.02 
0.89, 0.02 
0.02, 0.00 

M f ,  ( k  +a, kf % 1) 
1.09, 0.00 1.08, 0.01 

-0.22, 0.00 -0.25, 0.00 
0.00, 0-00 0.01, 0.00 

-0.31, 0.00 -0.31, 0.00 
0.98, 0.01 1.00, 0.01 
0.01, 0.00 0.01, 0.00 

1.11, 0.00 1-08, 0.01 
-0.28, 0.01 -0.25, 0.00 

0.00, 0.00 0.00, 0.00 
-0.34, 0.00 -0.31, 0.00 

1.02, 0.00 1.00, 0.01 
0.01, 0.00 0.01, 0-00 

',TABLE 2 ( b ) .  For legend see page 669. 

when K~ = 0, M,, decreases and HI, increases as the body is approached, but of 
course within a distance O(k-l) of the surfaceMl1 has to decrease to zero. 

When I C ~  9 1 analytical solutions show that the amplification of N,, is greatly 
reduced and M,, increases slightly. M33 has not been plotted because, when k 3 0 
and when /c3 9 1 and /cl = K, = 0, there is no change from its upstream value; 
lM331 = 1 for - 00 < x < - 1. For intermediate values of k it  will be different. 

In  figures 6(c) and (d) graphs of IMIll and lM2,l are given on the line 8 = tn. 
Now the differences in behaviour between high and low wavenumbers are very 
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Mi;' 

0-06, -0.29 
-0.06, 0.29 

0.01, -0.01 
0.07, -0.31 

-0.07, 0.31 
0.01, -0.01 

0.07, -0.27 
-0.08, 0.28 

0.02, -0.05 
0.08, -0.30 

-0.09, 0.31 
0.04, -0.05 

0.08, -0-12 
-0.14, 0.22 

0.06, -0.10 
-0.01, -0.22 
-0.13, 0.29 

0.14, -0.07 

0.08, 0.00 
-0.21, 0.16 

0.08, -0.10 
-0.13, -0.19 
-0.18, 0.27 

0.19, -0.05 

0-13, 0.26 
-0.35, 0.04 

0.07, -0.10 
-0.43, -0.26 
-0.27, 0.24 

0.23, 0.01 

M:; + Mi:' 

0.81, -0.19 
0.61, 0.29 
0.00, 0.00 
0.61, -0.29 
0.81, 0.19 
0.00, 0.00 

0.80, -0.19 
0.59, 0.28 
0.00, 0.00 
0.59, -0.28 
0.80, 0.19 
0.00, 0.00 

0.75, -0.17 
0.53, 0.23 
0.00, 0.00 
0.53, -0.23 
0.75, 0-17 
0.00, 0.00 

0.74, -0.14 
0.49, 0.19 
0.00, 0.00 
0.49, -0.19 
074, 0.14 
0.00, 0.00 

0.74, -0.09 
0.41, 0.12 
0.00, 0.00 

0.74, 0.09 
0.00, 0.00 

0.41, -0.12 

M,, 

0.87, -0.48 
0.55, 0-58 
0.01, -0.01 
0.68, -0.60 
0.74, 0.50 
0.01, -0.01 

0.87, -0.46 
0.51, 0.58 
0.02, -0.05 
0.67, -0.58 
0.71, 0.50 
0.04, -0.05 

0.83, -0.24 
0.39, 0.45 
0.06, -0.10 
0.52, -0.55 
0.62, 0.46 
0.14, -0.07 

0.82, -0.14 
0.28, 0.35 
0.08, -0.10 
0.36, -0.38 
0-56, 0.41 
0.19, -0 .05  

0.87, 0.17 
0.06, 0.16 
0.07, -0.10 

-0.02, -0.38 
0-47, 0.33 
0.23, 0.01 

TABLE 2 ( 0 ) .  For legend see page 669. 

Asymptotic 
M i n ( k + a ,  k5 4 1) 

1.23, -1.25 
-0.22, 0.43 
-0.02, -0.45 

-0.2, 0.46 
-0.02, -0.45 

1-20, -1.28 

1-17, -1.15 
-0.13, 0.60 

0.14, -0.99 
1.12, -1.19 

-0.08, 0.65 
-0.13, -0.99 

0.89, -0.59 
0.39, 0.49 

-0.27, -0.59 
0.69, -0.73 
0.54, 0.59 

-0.23, -0.54 

0.77, -0.21 
0.38, 0.15 

-0.09, -0.30 
0.40, -0.48 
0-64, 0.28 

-0.02, -0.21 

0.79, 0.29 
0.10, -0.11 
0.04, -0.16 

-0.05, -0.40 
0.55, 0.11 
0.16, -0.01 

~~ ~~ ~ 

much less than on the stagnation line 8 = 7r. In  addition the differences between 
lMlll and IM221 are reduced. In  fact IM2, I is greater than lMzzl and behaves like 

Having seen the general way in which Mi, varies with ( r ,  8) and k we now con- 
sider in more detail the physical mechanism involved and the asymptotic be- 
haviour of Mi, as E( = r - 1) + 0 and k +- 0 or k +- co. 

There are two ways in which the body affects the incident turbulent flow, as 
mentioned in 5 1 and as implied mathematically by dividing Mi, into the compon- 
ents M\$) and MPA. 

lJf111. 



A theory of turbulent $ow round two-dimensional bluff bodies 669 

Mi:' 

0.05, -0.08 
0-05, 0.08 

-0.01, 0.00 
0.01, -0.14 

-0.01, 0.14 
0.01, -0.01 

0.03, -0.07 
-0.03, 0.07 
-0.02, 0.00 
-0.04, -0.14 

0.03, 0.15 
0.02, -0.04 

0.11, -0.02 
-00-09, 0.02 
-0.02, 0.00 
-0.12, -0.11 

0.04, 0.17 
0.08, -0.06 

0.15, 0.01 
-0.14, -0.13 
-0.01, 0.00 
-0.18, -0.09 

0.03, 0.17 
0.10, -0.05 

0.16, 0.06 

0.17, 0.00 
0.27, -0.08 
0.01, 0.15 
0.09, -0.02 

-0.21, -0.04 

M E  +Mi?) 

0.94, 0.06 
0.15, 0.14 
0.00, 0.00 
0.15, -0.14 
0.94, -0.63 
0.00, 0.00 

0.93, 0.05 
0.14, 0-12 
0.00, 0.00 

0.00, 0.00 

0.94, 0.02 
0.09, 0.06 
0.00, 0.00 
0.09, -0.06 
0.94, -0.02 
0.00, 0.00 

0.96, 0.01 
0.06, 0.03 
0.00, 0.00 
0.06, -0.03 
0.96, -0.01 
0.00, 0.00 

0.99, o*oo 
0.02, 0.00 
0.00, 0.00 
0.02, 0.00 
0.99, 0.00 
0.00, 0~00  

0.14, -0.12 
0.93, -0.05 

Mi, 
0.99, -0.02 
0.20, 0.22 

-0.01, 0.00 
0-16, -0.28 
0.93, -0.49 
0.01, -0.01 

0.96, -0.03 
0.11, 0.19 

-0.02, 0.00 
-0.18, -0.26 

0.96, 0.10 
0.02, -0.04 

0.95, 0.00 
0.00, 0.08 

-0.02, 0.00 
-0.03, -0.17 

0.98, 0.15 
0.08, -0.06 

1.11, 0.02 
-0.08, -0.10 
-0.01, 0.00 
- 0 4 2 ,  -0.12 

0.99, 0.16 
0.10, -0.05 

1.15, 0.06 

0.17, 0.00 

1.00, 0.15 

-0.19, -0.04 

0.29, -0.08 

0.09, -0.02 

Asymptotic 
M,,(k + 03, k[ $ 1) 

1.09, 0.03 
-0.09, -0.03 
-0.02, 0.00 
-0.21, -0.04 
-0.21, 0.04 
-0.01, 0.00 

1.11, 0.4 
-0.09, -0.03 
-0.05, -0.01 
-0.20, -0.04 

1.21, 0.04 
-0.02, -0.01 

1.15, 0.05 
-0.10, -0.03 
-0.05, -0.02 
-0.19, -0.03 

0.18, 0.05 
0.01, -0.02 

1.14, 0.05 
-0.13, -0.02 

0.00, -0.02 
-0.21, -0.03 

1.13, 0.05 
0.05, -0.02 

1.11, 0.06 
-0.20, -0.02 

0.03, -0.01 
-0.26, -0.02 

1-06, 0.06 
0.07, -0.01 

TABLE 2 .  A comparison of computed and asymptotio values of Mi, at 8 = @T 

(i) Distortion of vorticity field by mean $ow. The first effect is that the body 
creates a different mean velocity field around it and upstream of it, which, as 
shown in 8 3, leads to the distortion of the random vorticity field of the incident 
turbulence. Consider an eddy in the incident flow with a velocity u,, vorticity 
a, and length 1 (or wavenumber k: = l/Z). The vorticity of the eddy when dis- 
torted by the mean flow induces a velocity u@), in addition to the incident velocity 
u,. If 1 2 a changes in o occur over a distance of order (denoted by - )  a, so 
that Iu@)l N I M L ) ~ ~ .  But if 1 < a these changes occur over a distance N 1, so that 
Iu@)'] N lZo,l. Since u, w Em,, then, if 12 a, the ratio Iu(~)~/luml N all and if 
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0 I I I 

I .0 ‘7.0 3.0 ‘4.0 
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FIGURE 6. Asymptotic solutions for lMlll and lMz21 when b < 1 and k + 1 and computed 
solutions (crosses) when K~ = K~ = K~ = 1.0. (a) \Mil[@) on 8 = A. (b)  l M 2 2 \ ( ~ )  on 8 = A. 

(c) lMlll(t-) on 0 = *A. (d) ]M221(t-) on 8 = fr. 

R: B ,  --, 
I 

FIGURE 7. (a)  Stretching of fluid elements near the stagnation point. (b)  Stretching 
and ‘piling-up’ of vortex lines around the cylinder. 
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1 < a, ~ u @ ) ~ / ~ u , ~  N 1.  Thus the velocity of turbulent eddies with wavelengths 
large compared with the body’s dimension (or k < 1) is relatively unaffected by 
their vorticity being distorted by the mean flow. However, the velocities of 
small-scale eddies (or k 1) can be amplified or diminished in proportion to the 
stretching or shortening of the vortex lines. Thus to understand how the velocity 
of small-scale eddies (or wavenumber components of the incident turbulence 
where k $ 1) is changed it is necessary to examine how a vortex line in the inci- 
dent flow is stretched as i t  is convected round the body by the mean flow. 
Figure 7 (a )  shows how the lengths of two vortex elements which are parallel and 
perpendicular to the stagnation line upstream are changed from (dx,,dy,) at 
time t ,  to (dz2, dy,) at time t,, where dy,/dyl = 1/Ux(t2), if Uz(tl) = 1. This result 
follows from (3.11). The physical implication is obviously that as the fluid ele- 
ment approaches the body, the length of the fluid element AC is reduced to 
zero while that of the element AB is stretched by an infinite amount. The effect 
on the local velocity, if k 3 I, is equally dramatic, but depends critically on the 
value of the wavenumber K~ (which is also the frequency). 

If K, = 0, then the vortex line AB is one of an identical sequence of vortex 
lines produced by a velocity u,, = S, exp ( Z ’ K ~ Z }  and the stretching of the vortex 
line leads to an amplification of ul, near the stagnation point (see figure 7 a ) .  
(This phenomenon was fully discussed by Sutera et a2. 1963.) The vortex line AC 
canbe produced byavelocityfieldoftheform u = (0, S,exp{iK3z}, S,{exp{i~~y}), 
so that the implication of AC being reduced is that u2 and u3 decrease. Both these 
results are confirmed by inspection of the results in (5.50) and (5.51) for Ni, on 
the line 0 = T ,  where we see that, if K 1 / t  -f 0,  as +$ +- 0 and let -+ 00, 

J?,, = 0(1/!5), M2, = O(t-1, M33 = (3%). (5.53) 

On the other hand, if K~ =k 0 then the incident velocity u, must be partly 
generated by a sinusoidal distribution of vortex lines such as A,B1 and A;B; 
in figure 7 (b ) ,  whose vorticities have opposite signs, e.g. 

u, = ( S , e x p { i ( ~ ~ ~ : + ~ ~ z ) ) ,  ~ , S , ~ X ~ { ~ ( K ~ X + K ~ X ) } ) .  

Since the vortex lines cannot slip round the two-dimensional body, it follows now 
that vortex lines are ‘piled up ’ a t  the stagnation point and along the whole sur- 
face of the body; both in this case and the previous case viscous effects at the 
surface ensure that a steady situation is maintained. The velocity induced by this 
‘pile-up’ of vortex lines with differing signs is likely to be much less than in the 
case of K1 = 0. The results of the analysis in (5.50) and (5.51) show that this is a 
reasonable physical picture because if K~ = O ( k ) ,  as t + 0 and k t - +  00 

MI, = 0(5), M,, = O(5L M33 = O(1). (5.54) 

In considering the induced velocities given by (5.53) and (6.54), we have 
assumed that locally the vorticity field varies sinusoidally over several wave- 
lengths, which is true if let $ 1.  However, at  the body surface the vorticity field 
ceases, unless we imagine that there is a vorticity field inside the body. This is the 
analytical device adopted in 4 5.2.1, which is further complicated by the fact that 
0, + co as t -f 0,  and that if K, $: 0 there is a ‘pile-up’ of an infinite number of 
vortex lines of varying strengths in an infinitesimal distance, as shown by the 
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graphs of ?22 and F33 in figures 5(b) - (4 .  Because the 8 and z components of 
vorticity inside the body are assumed to be of the opposite sign to the vorticity 
outside, e.g. a,( -l)  = -a,([), it follows that the normal velocity iZl is zero at 
= 0. But since the vorticity inside and outside the body both add to the turbu- 

lent velocity G3 parallel to the axis of the cylinder, and since 6, is singular as 
6 -+ 0 (as shown by figure 5b) ,  it follows that for low frequencies E3 is singular 
as [ + 0. The radial component of vorticity 0, a t  the surface of the body is only 
zero at  the stagnation point and retains the same sign inside the body. Since 
neither O1 nor 8, is singular a t  [ = 0, the azimuthal velocity iZ, is of order unity 
for low frequencies, except a t  the stagnation point when K, = K~ = 0. Thus as 
K~ -+ 0 and ( K : + K ~ ) *  + 00, such that K,Jln<l + 0 as 5 -+ 0, 

I%I = O(-Elnf), 1Jt2J = w), 1B3J = O(--ln[). 

However, when K~ % 1 the vortex lines are so concentrated near = 0 that 
they cancel each other out and induce very small velocities. For example if 

B=n and K ~ - + C Q  or O + n ,  K ~ - + C O  and ( K : + K : ) * ~ + ( K ~ + K ? )  

lB31 1 = O[K$ exp { - $nq]]. 
Alternatively over a limited range of wavenumber space and away from the stag- 
nation point this concentration of vortex lines can induce large velocities. For 
example if 8 $. n and K, % K~ 9 x1 

1411 = 0(&i3), IBsiI = O(d) ,  1Bs.11 = O ( K h  

The reason why this amplification can occur is because, when 6 =t= n and K~ -+ 00, 

the term etKdr( - $kl) occurring in the expression for I, in (5.41) can be O ( K i h )  

if zl 9 z2,, but at 6 = n where q5 < 0 this term is a t  most O(@e-frKi). This 
difference is caused by the integrated effect of the vortex lines being much 
less at 8 = n than when B =k n, because of the different nature of the ‘pile-up ’ 
of vortex lines at the stagnation point to elsewhere round the cylinder, which is 
demonstrated by figures 5 (c) and (d). The physical explanation for this difference 
is that away from the stagnation region the variation of the incident vorticity 
between streamlines, i.e. the effect of K,, contributes an additional regular sinu- 
soidal oscillation to the variation to the vorticity FU with 6. This differs from 
the effect of the variation of the incident vorticity with time (i.e. K,), which is to 
create an oscillation in ?$j of ever decreasing scale near the surface owing to the 
logarithmic singularity of AT, the time delay function. In  fact these two effects 
counteract each other when K, $ K~ and 8 =+ n because then at a point [ = K ~ /  

(4~,sin O ) ,  the phase of Fij is stationary, i.e. a [ ~ l ( A r  +x) + K,(Y - A,)]/a[ = 0. 
This explains why the graph of in figure 5 ( c ) ,  unlike that in figure 5 (d) ,  has 
an extended maximum, and why therefore the integral for the induced velocity is 
so much greater than when 8 = n. From a mathematical point of view it is inter- 
esting that in this limit Iij can also be calculated by the method of stationary 
phase. 

The other implication of the ‘pile-up’ of vortex lines is that it  not only affects 
the magnitude of the velocity but also ensures that the velocity oscillates 

lJtlll = O [ ~ ~ C ~ X P { - ~ ~ K ~ ) I ,  l@211 = o[4exp{-+nKl)~, 

1, 

F L M  61 43 
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very rapidly close to the surface of the body. This means that when the velocity 
is integrated along a line normal to the surface to calculate the surface pressure, 
the result must be very small when K~ 9 1, as shown in detail by Hunt (1973). 

Note that we have concentrated on the cases where k 9 1, so that there is a 
direct relation between local vorticity and velocity. In  general the velocity at a 
point is induced by vorticity over a wide area of the flow, which is why it is so 
difficult to compute 

(ii) Blocking of turbulent Jluctuations by  the pressure of the body. The other 
important effect the body has on the turbulence is that it forces the component 
of turbulent velocity normal to the surface of the body to be zero. This effect 
can be present even if the body does not distort the mean flow, for example a 
flat plate parallel to the flow. This boundary condition (2 .253)  can be satisfied 
if the body is replaced by a set of sources producing a velocity dS), so that in the 
flow field near the body 

and on the body a t  n = 0, 

when k N 1. 

u = u, + U(d) + u@, 

u@).n = -u CO. n-u@).n. 

These two velocity components u(@ and u@, due to the distortion of vorticity 
and the body's replacement by a distribution of sources, correspond to the 
expressions V x + and V@ in (3.17) and to  the tensors Mi:) and MY2 in (4.32). 
In  our calculations of u@) when k 1 i t  was possible to choose a suitable vorticity 
distribution in the body, or for arbitrary k to choose suitable constants in the 
integrals (which can be regarded as equivalent) such that u@). n = 0. Therefore 
Iu(")I N \urn\, and from our discussion of 

Z 9 a (or k < I), ]u(s)1 B Iu(@1 

we find that, if 

and tha,t, if 1 < a or k $ 1, Ids)] N Iu@)l. 
When k 9 1, the velocity produced by sources on the boundary decreases 

very rapidly as a function of the distance 6 from the boundary, in fact like 
e-kt, and therefore over most of the flow can be ignored. But when k 1, our 
order-of-magnitude argument shows that u@) is now the most important com- 
ponent of the flow everywhere, since Iu@)I 9 Idd)l. This explains why the leading 
term &@) in the asymptotic expansion for Mi, as k + 0, equation (5.23), is pro- 
duced by the source (in this case, dipole) effect of the cylinder. In  fact Mi!) is the 
velocity distribution produced by a steady velocity in the 2 direction far upstream 
and Mi\) is the same for an upstream velocity in the y direction. But, however 
small the values of k, there must be some variation of the upstream velocity over 
a distance of the order of the size of the body, so that there is sufficient vorticity 
in the upstream turbulence to be distorted and induce a velocity O ( k ) ,  denoted 
by The physical explanation for the terms Mi$) of order k2 In k is partly 
that the velocity near the body is induced by vorticity in the far field where 
kr p 1, and partly that the source distribution on the body produces many 
higher order wavenumber components in utS) and therefore in N$). 

(iii) Combined eflects of distortion and blocking. Having discussed the physical 
processes and the analytical solutions in the limits k $ 1 and k < 1, it is worth 
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considering the range of k of order unity. There is no special reason why a maxi- 
mum in Mi, might not have occurred near k = 1 rather than when k < 1 or k 9 1. 
In  fact tables 1 and 2 and the results plotted in figures 6 (a)-(d) show that when 
k N 1 Mi, lies somewhere midway between its asymptotic values. This fact might 
be explained by saying that when k N 1 there is a rough balance between the 
distortion of the incident vorticity and the velocity produced by the source 
effect. 

6. Spectra, correlations and variances 
6.1. Form of the incident spectrum Qmij 

In  order to calculate the one-dimensional spectra and correlations of the turbu- 
lent flow near the body Oij ( K ~ )  and m, we have to know the structure of the 
incident turbulence. In  particular we need to know Qmij ( K ~ ,  K ~ ,  K J .  

The only assumption about the incident turbulence that is required for our 
analysis is that it should be homogeneous. Only then can Qmij be defined. However, 
in order to  simplify the calculations, to bring out the physical ideas and to pro- 
duce results which can be tested experimentally in the wind tunnel we make 
the additional hypothesis that the incident turbulence is isotropic. Then given 
Omll(~,)  upstream, we can calculate Om&). 

A convenient choice for Oml l (~ l )  is the spectrum first proposed by von KAr- 
m&n (1948) as a simple expression which fits wind-tunnel measurements of 
turbulence behind course grids (see Bearman 1972). It has since been used by 
Harris (1  97 I) to  describe the spectrum in the natural wind when the atmosphere 
is neutrally stable or, which comes to the same thing, when the wind speed is 
high enough. If OZll and K: are the dimensional forms of Omll and K~ defined by 

the von K&rm&n spectrum can be written as 

where the numerical constants g, and 9, are determined by the conditions 

and the integral scale 

L, = {IOm u ~ , ~ ( x * ,  y*, 2) u ~ ~ ( x *  + r:, y*, x * )  dr:)/uz. (6.3a) 

It is found that 

(6.3 b )' 

To avoid the parameter a/LZ when presenting the results for Omll it is convenient 

(6.4) 
to define 

h &l(C1) = (a/L,) Oll (~ l ) ;  K ,  = K,(L,/a) = K: L,. 
43-2 
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There are two important points to be made about this formula (6.2) for the 
spectrum. E'irst, it  reduces to the Kolmogoroff spectrum in the inertial subrange, 
i.e. when 72, + K? + L;,, where qb: = (v3/&)&, 

@&(K?) = C,&bc;-k 

In  many experimental investigations of the turbulence spectra in the subrange 
it has been found that C, N 0.25 (Lighthill 1970). Therefore from (6.2) and (6.3), 
the von K&rm&n spectrum implies that 

& = c2u:/Lz, 
where C2 = (gl/Cl)i = 0.69. 

Direct experimental measurements of E ,  2 and L, are consistent with this value 

viscous forces are of the same 
order as inertial forces, so that the analy8is of this paper is not appropriate. But 
it is relevant to note that when KT > y;l the spectrum decays very much more 
rapidly than and probably exponentially (Batchelor 1953). 

Now @m4j(u), which is normalized in terms of ul,, the r.m.s. incident turbulent 
velocity, and the body size a, can be calculated in terms of OOcll (K , ) ,  which from 
(6.2) is 

(6.5) 

where c1 = g,(a/L,)B, and c2 = g2(a/Lx)2. We now use the fact that, if the turbu- 
lence is isotropic, 

(Batchelor 1953). E ( k )  is the dimensionless form of energy spectrum function, 
snd is related to @,,,(K,) by the equation 

of 4. 
The second point to  note is that when K: - 

@rnll(Kl) = C l L C 2  + K ? F >  

OOcij(K) = (E(k)/477k4) (k2 sij - K i K j )  (6.6) 

(Batchelor 1953, equation (3.4.18)), so that from (6.5) 

where c3 = 55c1/36n. 
From(6.7), (3.31)and(3.32)itfollowsthat 

and (6.6) 

(6.7) 

which of course shows that 
A h A A 

Om2,(0) = O,,,(O) = $@mll(0) when K ,  = 0, 
h A  A 

and Om22(~1) = Om33(21) = @,,,,,(i?,) when 2, -+ co. 

(from the Fourier transform of (6.2)) 
It is useful to note that the autocorrelation of the incident turbulence is 

Am1,(O, 0, 097) = Arnn(7) = g, (7alL, ) f~~(g~7a/Lx) ,  (6-9) 
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where g, = 2q, 7d/(2*qt r(i)) and K4 is a modified Bessel function. Note that the 
ratio a/L, appears because r has been normalized in terms of ;il, and a, the radius 
of the cylinder, rather than in terms of L,. 

6.2. Large-scale turbulence: (a/-&,) 4 1 

6.2.1. One-dimensional spectra. It follows from (3.32), (3.36) and (6.7) that 
to calculate the one-dimensional spectra and thence the covariances etc., we 
have to evaluate the double integral 

Now consider which part of wavenumber space provides the dominant contribu- 
tions to the integral in (6.10). First it is clear that in (6.10) Qamm increases as k 
increases until k: = O(a/L,), or k = O ( K ~ )  if K~ $ a/L,. Thus the major contribu- 
tion to the integral comesfrom the regionof wavenumber space where k = O(a/L,) 
or E = O(KJ, whichever is the larger. Consequently if a/L, 4 I and K~ = O(a/L,) 
or Khl = O( I ) ,  the only values of Min(x, y; K )  that are required are those for which 
k < 1. Thus for large-scale turbulence the spectra can be calculated using the 
asymptotic expansion for Mi, as k --f 0, defined by (5.23)-(5.25). In  other words, 
only the large eddies need be considered if the integral scale is large. Since the 
expansion of Min(K) in (5.23) is only valid to O(k21n k ) ,  it  follows that, as k -+ 0,  
Mi,  M j ,  can only be expanded to O(k2 In k). However, the usefulness of the expan- 
sion procedure is limited because the terms O(k21nk) have the effect that the 
integral (6.10) only converges when r, =+ 0, whatever the value of K ~ .  Also we 
cannot evaluate the integrals analytically using the terms to this order, but it is 
possible to see that, if this %nee-dimensional spectrum iszormalized in terms of 
L,, the integral scale, i.e. if = (a/&) @&J, then @,(a,) can be expanded 
as SL series in terms of alL,: 

A h A  h 

O. 23 .(x, y; x', y'; r,; K1) = O $ ? ) ( K ~ ~ )  + (a/L,) G~;~(CJ + (a/L,)2ln (a/&,) (+:?)(al) + , , ., 
(6.11) 

where the first three terms are calculated using the following terms in the ex- 
pansion of Mi, in (5.23): Mi!), Mi!) and H#), &@) and Mi?) respectively for the 
first three terms in (6.11). Note that 

Although Mi:), Mi:) and Mi?) are known analytically a closed-form solution 
for only @$)(Khl) and O$)(dl) can be given. Since from (5.24) and (5.25) 

A h 

and @$$) are real, while $$) is complex. 

A h 

Mi!) = M$!)(x, y), 

and since O & K ~ )  = 0 if i +j, it follows from (6.10) that, whatever the value 

@$)(x, x'; r,; 2,) = F ~ ~ ~ l & k r Q m ~ t ( r z ;  Cl), (6.12) 
ofrm h A 
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where 

5 = rz(a/L,) (92 + w. I 
To obtain the cross-spectra at two points in the x, y p1an:or the spect5um at one 
point, we put r, = 0 in (6.13) or use the expressions for @mll(21) and 0,,2(~1) in 
(6.5) and (6.8). Although MLi) can be written in the general form 

i(KIPil(X, !/) + K 2 q d X ) Y )  +K3si3r3Z), 
h A 

we cannot obtain a general expr2ssion for O#x, x‘; Khl) in terms of @mii(rz;i?l) 
if rz =f= 0, but for our particular Omii (~~;i?~) it  can be calculated at each point 
in the flow in terms of modified Bessel functions. However if rs = 0 

A 3 

@$$)(x, x’; Cl) = i2] F$&(x, x’) s,, @&)}, (6.14) 
L 1  

where x = (x, y, 2)) x‘ = (x’, y’, 2’)) 

(6.15) 1 
q i 1  = - JqW [*!IjZ(X’) +Pjl(X‘)I - Ny?(X’)Pil(X) 

q ) 2 2  = - Mg)(X’)pi2(x) + Ng(x)pjz(x’), 

+ Bdx)  Jf$(X’) - &I&’) J!f,l(X) + +Jf%)(x’ 1 a&) 
+ &[Si3 Mj3(x’) r 3 ~ ( x )  -r3~(x‘) Mi3(x) &jI, 

@83 = &383jI333(X’) - P D ~ ~ ( X ) I .  
A A 

(.)mll(Ec^I) and Om22(Khl) are given by (6.4), (6.5) and (6.8). Note that if i = j, and 
if x = x’, then B’$LA= 0:;) = 0. As an example of these expressions, the real and 
imaginary parts of 02,(x, x‘; Cl) (co- and quad-spectra) are calculated for points 
on the stagnation line 8 = 7~ using (6.11) and (6.13). The results are plotted in 
figure 8. The most striking difference between the two graphs is that the unfami- 
liar quad-spectrum is zero when = 0,  but decays like 121[-g when I K h l l  -+ 00. 

This last point is important when integrating the spectrum to obtain cross- 
correlations. Note that since @ki(cl) is multiplied by a/Lxin (6.11), the imaginary 
part of O,,(d,) or the quad-spectrum is very small when a/Lx -+ 0. 

The practical con+ision to be drawn from this section is that, when a/L, < 1, 
the cross-spectrum O,j (x; x‘, re, Khl) can be calculated to an accuracy of 

A 

A 

0((a/LJ2ln (a/Lx)) if rz =k 0, 

but if r, = 0,  i t  can only be calculated to O(a/L,). If x = x‘ and r2 = 0, then 
the important results for the power spectral density of one-dimensional spectra 
a t  a point O,, (x, el) (i = 1,2,3)  can only be calculated to O( l), so that the varia- 
tion with a/L, is not then known, nor is the error in neglecting the finite value 
of a/Lx. However, the qualitative effect of increasing a/L, can be inferred from 

A 
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FIUURE 8. Cross-spectrum a,,(x, x’; Khl) of the y compoynt of velyity a t  two points on 
the stagnation line 0 = R, at T = 1-5, 2.5. Note that O,,(~,) = 0$$1) + (a/L,) @;?&), 
where in this case the first term is real and the second imaginary. 

A 

the difference between the values of Mi!) and the computed values in tables 1 

and 2 of Mi, when k w 1. In  figure 9 graphs are shown of OI1(Khl) and OZ2(Khl) at 
r = 2-0 and 0 = m, $m as a/L, -+ 0, using (6.12). Dashed lines are drawn for 
comparison with the upstream spectra, O,,,(Khl) and @mz2(21). 

6.2.2. Correlations and variance. From the spectra (6.12) and (6.14), the cross- 
correlations and the variance can be calculated throughout the flow, using (3.33). 
To do so we note that, since the integral is convergent, 

A A 

A A 

= -a [R7&)lld7’ (6.16) 

where Rmii(7) = Rmi4(O, 0, 0,7) ,  as defined in $3.3. Therefore we can evaluate the 
cross-covariance of the velocity at  two points a t  different times, namely 

In the special case where (x’, y‘) is another point lying on the mean streamline 
through (x, y) and 7 ( = AT(x’ ,  y’) - A,(x, y) + x’ - x) is the time taken to travel 
from (x, y) to (x‘, y’), then the above covariance has been termed the ‘pseudo- 
Lagrangian ’ covariance by Hunt & Mulhearn (1  973) and forms the basis for a 
statistical theory of turbulent diffusion from a source near a two-dimensional 
body. Note that the expression (6.17) has been deduced by assuming that the 
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FIGURE 9. One-dimensional spec%a of the 2 2nd y components of velocity for large-scale 

turbulence, i.e. u/Lz -+ 0. (a) O,, (kl). (b)  022(k1). - - -, T -+ a; - , r = 2-0. 
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incident turbulence is isotropic, but without assuming any particular form 
of the spectrum. To obtain the order of magnitude of the second term we use the 
expression in (6.9) for &11(7), and if we take T = O( l), as a/Lz -+ 0, then this term 
can be seen to be O ( z 1  ( a / L , ) % d ) ,  as compared with the first term, which is 
O(zl). Thus (6.17) is not valid as 7 -+ 0; in fact the condition for its validity is 
that T B qK/(a).  However, the result is useful because it can be used to indicate 
the effect of turbulence scale on diffusion. 

The cross-variances, without time delay, the covariances and variances can 
only be calculated to zero order as a/L, +- 0, since the terms O(a/Lx)  in the inte- 
gral (6.10) are identically zero. We find that 

Rii(X, x'; T,) = @&(x, x') &,R,,(O, 0, r,, 0). (6.18) 

When rs = 0, (6.18) becomes 

%(X) u,(x') = E $ l ( X ,  x') ~ k l U m k U m 1 ,  (6.19) 

which can usefully be expanded to give the variances 

(6.20) 

These results are valid for any homogeneous incident turbulence; they do not 
depend upon any assumptions of isotropy. To recapitulate, M,, and Mzl are 
equal to the normalized mean x and y velocities over the body, and M,, and M,, 
are equal to the normalized mean x and y velocities caused by an upstream 
velocity in the y direction. Alternatively M12uma, M22u,2 can be regarded as 
the z and y perturbation velocity components due to a change in the direc- 
tion of the incident flow from 0 = 0 to 0 = um2. Using this idea the zero-order 
values of the variances can be calculated for a turbulent flow with a large scale 
over any  body, given the mean velocity around the body (i.e. Mi,) and the rate of 
change of that mean velocity due to small changes in the direction of the incident 
flow (i.e. Ni2). One benefit of the higher order analysis of this paper is that it gives 
an idea of the limitations of such quasi-steady analyses. 

6.3. Srnall-scale (a/& 9 1) and high-frequency (K ,  $ 1) turbulence 
If a/L, > 1 or K~ 9 1, then the dominant contribution to the integral in (6.10) 
comes from the region of wavenumber space where k B 1. Therefore the asymp- 
totic expansion for &,(x, y; K) as k .+ 00, given by (5.43)-(5.45), should be used 
in (6.10). In  this case only small eddies need be considered, because the integral 
scale is small. Since we were not able to obtain a solution for Mi, as k -+ 00 valid 
everywhere in the flow, except when K~ = 0, we have to consider whether k< 9 1 
or k6 < 1. Interpreting these criteria in terms of a/&, it follows from (6.10) that, 
ifa/.L, 4 1 and K~ 5 O(a/L,), i.e. c, = O(l) ,  then these two regions can be defined 
more conveniently as (a/L,) 5 4 1, or (a/L,) < < 1. But if a/L, 5 O( l) ,  then the 
expressions for Mi, as k + 00 can only be used in (6.10) when K~ 1, or 
P,(a/L,) % I ;  then the two regions can be defined as ~~c = (a/&) Qlg % 1 or 
K~ 6 < 1, respective€y. 
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Before calculating a,, for these two cases, it is useful to simplify the integrand 
in (6.10). Since when k 9 1, the expression for Mi, can be reduced to Mi?), where 
Hi?) = ia$)ejklKk, as shown for example in (5.453), 

MLL(x,y; K ) M j m ( x ’ , y ’ ; K ) ( k 2 ~ ~ n m - K , K , )  

= u;$+ (x, y ; K) a,$$( x’ , y ’ ; K) ( Ic2 S,, - K ,  K,) k2. (6.2 1) 

6.3.1. Spectra, when (a/L,) 6 & 1 or K ~ [  & 1. The spectra away from the 
immediate vicinity of the body, such that k5 $= 1, are calculated using the result 
for a$$), given by (5.31). We first express uif) as 

a $ f ) ( x , ~ )  = i L i l ( x , ~ )  exp{i(K1TO(x)-K2Y(x))}, 

where x = (x,y), TOW = x+A,(x), W X )  = -y+A,(x), 

L,, = eijijkxj(x, K) ykl(x)/x2 (and is real), 
then 

uid,)+(x, K) aj$(x’, K )  = &(x, K )  Lj,(x’, K )  exp { i ~ ~ ( T ~ ( x ’ )  - T,(x))} 

x exp{ -kZ(Y(X’) -Y(X))>. (6.22) 

Analytic expressions for O i j ( ~ l )  cannot, in general, be obtained from the integral 
(6.10). However, on the stagnation line 15 = n, U, = aA,/ay = 0, so that the 
computation of the integral (6.10) is greatly simplified. The distortion of turbu- 
lence on 6 = 7~ is an interesting special case because the vortex lines are only 
stretched by the mean flow and not twisted. This symmetric distortion was one 
of the cases studied by Batchelor & Proudman (1954). Substituting (6.22) into 
(6.10) leads to the spectrum at a point (x, 0) on the stagnation line: 

From (5.27) x1 = K ~ / U ~ , X ~  = K ~ U ~  and x3 = K ~ ,  and from (3.11), yzz = I+aA,/ 
ax = 1 / U,, whence 

A 

@ll(’l) = 2g3 Ill (‘l)/ v: *> 
where 

gn b ( l + b )  [b(sin2$X + U Z , C O S ~ $ ~ ) ~ +  U ~ C O S ~ $ ~  + ~ i n ~ q 5 ~ ] d $ ~  db 
[1/U;+b(U;~os2$~ +sin2$X)]2[g(kl) +b]Y f 

0 

(6.23) 
g(cl) = 1 +C2/K: = 1 + g z / c ; ,  b = (Kg + K $ ) / K ? .  

Since 

(6.24) 
(Grobner & Hofreiter 1968), Il1(C1) can be reduced to the integral 

2[( 1 + U t b )  (1  + U:b)]+ 
Ill(G1) = *7r 

(6.25) 

Now this integral cannot be re-expressed in terms of known functions, however 
we can examine its main properties close to and far from the cylinder. When 
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r + co, U, = 1 and Ill(&) = in x $+g(?l)-k, whence @ll(i?l) = G)mll(21), as 
expected. When r - 1 = 6 -+ 0,  Ul -+ 0, and the asymptotic form for I@) can be 
obtained for small and large values of kl. As f l  -+ 0, so that g(al) -+ co, 

h A 

(6.26) 

Now when el -+ 0O (g(k1) -+ 11, 

Ill(k1, - M W  + O(g(21) - 1)) --AIL (6.27) 
where, as Ul -+ 0, 

[I + ($U:+ Uf) b + O( U!)] db 
o (1 + b)V (1 + Uqb)% (1 + Uib)P' 

AI -1 
First integrate by parts, and then use the power series expansion of the integral 

where y3 = y1 + y2 - 2, 
Y3 ! (2) = n!(y,-n)! '  

Thence A I  - t-.+nGl Uf+O(U)'), 

where G, = r(+) r(i)/r(g) = 5.6. 

Therefore, in the formal limits < -+ 0, ((a/&,) -+ co, -+ 0, 

A 1 0.319 A 

Oll(K1) = - = - nu; (25)Z ' 

(6.28) 

(6.29 u) 

and as < -+ 0, f,(a/L,) f ;  -+ 00, el -+ 00, 

611(i?l) N 0-167/# U i  = 0-167/i?f(2()*. (6.29b)i 

These formulae show that the shape of the Oll(i?,) spectrum is likely to be un- 
changed near the body but that as f ,  -+ 0 the spectrum is very much more 
amplified than in the region where 2, -+ 00. The physical implications of these 
results are discussed later. But the results are also useful in checking computa- 
tions of the in%grals (6.23) and (6.24), the results of which are shown as a graph 
in figure 10 of ";>ll(K"l) on 0 = n, where u/L, $ 1. The spectrum has been evaluated 
a t  three positions, r = 2.0, 1.5, 1.1, a t  the third of which comparison with the 
asymptotic results (6.29) shows approximate agreement. (Higher order terms in 
the two asymptotic series have been obtained and then much better agreement 
is found.) Note that the results a t  r = 1-1 are strictly only valid if alL, 9 10. 

f In this and subsequent formulae for spectra in the limit I?, + 00 the form of the result 
does not depend on the partioular speotrum taken for Dmij in (6.7). It only depends on the 
spectrum satisfying the Kolmogoroff law that E ( k )  K k-8 as k -+ CO, for k < a / 7 ~ .  

A 
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FIGURE 10. One-dimensional spectra of the component ofAvelocity on the stagnation line 
for small-scale turbulence not very close to the body; i.e. O,, (R,)  on 8 = 77 when 

a/& -+ 03, (aiLz) E % 1. 

A 

O,,(Pl) on 0 = ?T can similarly be found, the relevant expression to be evalu- 
ated being 

(6.30) 

Using the integrals (6.24), 

(6.31) 

which, as before, ca2not be evtluated exactly. However, it  can be shown that, as 
r --f co, U, --f 1 and OZ2(C1) - @m22(21). When r N 1 = E + 0, U,+ 0,  (a/&) E+m 
there are two asymptotic regions as Cl -+ 0. 

(1 + b )  [2 + (1 + uz,+ u:, b + U!b2] db 

0 ( g ( K h 1 ) + b ) ~ ( l + ~ ~ b ) ~ ( 1 + U ~ b ) ~  ’ 
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(i) 2, < U f  (or U:g2(~1) l ) ,  when 
A A 

@22(21) = UJ(27T) = u19m22(21 = 0). (6.32 a)  

(ii) Uf < k1 < U, (org(2,) 1> Qg(2,)  $=- 1 $=- U!g2(k,)), when 

r(s)r(+) 
122 ($1) - 

4[g(K1)]+ W'-) 
and 622(d,) N 0*369U1/f1. 

When fs --f 0, U, -+ 0, (a/L,) d1g -+ co and d, -+ 00, 

(6.323) 

A 

Clearly the shape of the 02z(2,) spectrum is drastically changed near the body, 
one part, region (ii), being amplified, while as 2, -+ 0 or 2, + 00 the spectrum 
is diminished. Thus in the limit U, -+ 0, (fi2,(2,) approximates to a weak delta 
function. These ̂ unexpected phenomena are demonstrated in the graphs shown 
in figure 1 1  of G2(2,) on 0 = 7~ when a/L, $=- 1. The graphs have been com- 
puted from (6.30) and (6.31),  and agree with the form of the asymptotic results 
(6.32).  

The results for 922(i?l) obn 8 = n near fs  = 0 suggest that it would be interesting 
to compare the spectra 0 2 2 ( k l )  of the tangential component of velocity G2, a t  
say 6 = 0.05 for 6 = n, &r and in. Calculating Zkj) from (5 .31)  and (5.34) and 
substituting (6.21) and (6 .22)  into (6.10) it  follows that, when fs < 1 ,  

622(.1) = c3('1 + '2 + '?3)9 (6.33) 

A 

where 

x, = ~ ~ a T / a r  - K~ U, = K ~ [  - 1/2< + i(4 cos 0 + l ) ]  + 2~~ sin 8, 

X O  = - i K 1  Cot (464, X z  = K3, X 2  = XF + X: f X g .  

The spectra are given in figure 12, which shows that the peak in the low-frequency 
part of the spectrum decreases as the flow moves round the cylinder from the 
stagnation point. On the other hand, the ggh-frequency part increases. In  this 
as in all cases where (a/.&) 5 p 1 as 

6.3.2.  Xpectru when (a/&) fs  < 1 .  In general the calculation of one-dimensional 
spectra of the velocity very close to the body cannot be done simply by using the 
results for u$'(Ic) when lcfs < 1 ,  and k B 1, given by (5 .43) ,  because integrating 
with respect to /c2 and K~ to evaluate Oii(q) leads to a divergent integral. There- 
fore, in general, a$?)(ic) must be evaluated in the region of wavenumber space 
where kt = O( l),  which can only be done by numerical calculation of the integral 
(5.38), followed by numerical calculation of the spectrum integral (6.10).  

+ 00, Bii(Khl) cc 2 ~ 8 .  
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4 

i.e. QRJ, on e = n when 

FIGURE 11. One-dimensional spectra of the 0 (or y) component of velocity, 
h 

--t co, (a/Lz) 6 > 1. 

However in two important special cases which provide valuable physical 
insight into the turbulence at this close distance from the body, the integrals 
converge. In  the first case we consider 011(~,) on 0 = 7~ in the limit K, + 0, k - t  co 
because in this limit MI, is known for kg = O( 1). M,, is given by (5 .46) ,  whence 
from (6.10) on 0 = n, r = 1 +[, 

where 

Again the integrals in (6.35) can only be evaluated in two asymptotic limih. 
Consider the limit +- 0;  substituting the asymptotic value off@) as b + 0 (given 
in (5 .466))  into (6.35) we find that the integral IA diverges, in other words does 
not converge forb < (a/?=), qK being the Kolmogoroff dissipation scale. However, 
the infinite integrals Ia and I, may be rewritten as 
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Rl 

FIGURE 12. One-dimensional spectra of the 8 component of velocity, i.e. GZz (k l ) ,  for small- 
scale turbulence on and near to the surface of the cylinder away from the stagnation point, 

r 

i.0. when a/LZ & 1 and (a/Lz) 5 + 0 or (a/L,) 5 > 1 and 5 Q 1. - - , e = 4,; -, 
0,  = pr. 

where E < <a/qK. Therefore, in the limit 

whence, by evaluating la numerically, we find in this limit 

A (a/LJ2 0.0788 
= 0) - 

(6alLzP * 

(6.36 a )  

(6.363) 

Note that this result is only valid if 6 B qK/a, in other words it is not valid at  a 
distance from the body equal to the Kolmogoroff dissipation scale. However, 
this is only of academic interest because, as shown in (5.52a),  this solution is only 
valid outside the boundary layer at  the stagnation point, i.e. < B Re-*. Since 
aRe-!i @ qK for typical laboratory or large-scale flows, (6.363) is valid up to a 
distance from the body of the order of the boundary-layer thickness. Thus the 
limitation (6.36b) is that (5 .52~)  must be satisfied. 
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FIGURE 13. The variation with distance from the surface of the zero-frequency value of 
the spectnim of the z component of velocity on the stagnation line for small-scale turbu- 
lence, i.e. O(k,  = 0) on 0 = 17 8s a function of &/Lc when u/Lx 9 1. 

Now consider the limit = i(u/Lz) g$ --t 00. Since, as b -+a, f(b) N 2/b ,  it  
follows immediately from (6.34) that, as c(u/L,) + 00, 

A 

@& = 0) N 1/77(2'5)2 = l/nU?. (6.37) 

This result of oourseAagrees with (6.29). 
The expression for OI1(Khl = 0)jn the two limiting cases can now be compared 

with the computed values of @ll($l = 0) in the range 0.01 < <(a/L,) < 10.0 
shown in figure 13. 

The second special case which we consider is 6,,(~,) as [(a/L,) -+ 0, when 
a/L, 3 1. Using the value of B 2 % ( ~ )  at 5 = 0 given in (5.47), and the methods for 
calculating O,, in (6.10) and (6.21), 

(6.38n) 

where 
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Q = tan-1 (21/zz3), ( - in < q5 < Qn), 2, = 2~,sin 6 + & ~ , ( 4  cos 8 + I), 

2 2 3  = (K: + 4.: cot2 (+8))+. 

These integrals (6.38b, c) can be performed analytically in two limiting cases: 
as K~ -+ 0,  given &z;CclL, + 0, a /L ,  1 (6' =t= n) 

' A  1 1 + 2 (cosO+sin 8) +cos26 
2n 

0 2 2 ( K 1  = 0) = - 
4 sin20 (1  + 2 sin 8) 

(6.39) 

Note that this result is independent of a/Lz as a/L, + GO. When K,+ GO, the evalua- 
tion of Ic and ID is a little more complicated, but since the major contribution to 
I, and I, occurs in the region of wavenumber space where 6 11 in, i.e. 2, 9 x23 or 
K% 9 K ~ ,  K ~ ,  then using (5.48) it follows that as (u/L,) f?, = -+ 00, and [(alL,) -+ 0 

(6.40) 

where 

For both these limits the important case of 6 = n has been excluded. In  the 
case of K~ -+ 0, the reason is that for the particular limit K~ + 0,  K~ -f 0,  K~ + cg 
B2% on 8 = IT is not given by (5.47) (as mentioned in the footnote on page 660). 
Therefore, if8 = n, K, = 0 and K~ -+ 0 the integrand of (6.38b) is singular and not 
valid. B2, in this particular region of yavenumber space has yet to be studied, but 
it is clear from (6.39) that as 8 + T ,  OZ2(Khl = 0 )  becomes very large in the limit 
a/L, 9 1. In the case K~ + 00, at 0 = T ,  & can be evaluated, the dominant con- 
tribution occurring where $ 21 0 and K~ 9 K ~ ,  whence as (a/L,) ;, = K~ -+ 00 and 
g(a/L,) -+ 0, on 8 = IT 

0,,(2,) - G ~ ( ~ / L , ) - Q K , ~  e+K1, (6.41) 

where 

b 
Note the striking difference in @22(i?1) as (a/L,)i?, + co between the stagnation- 
point region 8 = T in (6.41) and the flow further round the cylinder where 8 < n, 
shown in (6.40). 

Where 8 < n, @,,(a,) decreases algebraically as a power of f?l, in this case 
C ; Y ,  whereas at  6 = 7r we find the unusual phenomcpon of an exponential decay 
of the non-dimensional spectrum. However the @,,!i?,) spectrum near 8 = T 

is even more strange because, as (6.40) shows, 62z(ic l̂) increases as 8 -+ n. 
Therefore near 0 = n, where c1 + 00, a sudden decrease in @22(i?1) must occur. 
(This corresponds to the dominant contribution in integral 1, shifting from the 
region of q!~ = to 6 = 0.) Equation (6.39) shows t$at as kl + 0 022(f?1) behaves 
quite differently, between 6' = IT and 6' + n in that Oz2(Khl = 0)  rapidIy incieases 
as 8 -+ IT. These surprising phenomena are demonstrated by the graphs of @2z(21 ) 
as g(a/L,) -+ 0 at various values of 8 shown in figures 12 and 14. 

6.3.3. Variance. When a/L, 9 I and (a/L,)[ 9 I, the cross-variance at  two 
44 F L M  61 
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\ y u / L x =  10.0 \ \  

o~ooolo~ool 1 0.0 1 0.1 1 .o 10.0 

4 
FIGURE 14. One-dimensional spectra of the 0 component of velocity, i.e. 6,, (k l ) ,  in the 
region of the stagnation point a t  6 = 0 when alL, 1 (spectrum not calculated when 

h 

K1 < 1,e = n). ---, 0 = n, - e = * .  

points with time delay is obtained from the definition in (3.33) by using the 
definition of aij(K1) in (6.10) and the simplifying formulae (6.21) : 

In general a triple integral must be evaluated to calculate R,, but there are some 
important cases where only double integrals need be evaluated. 

The ‘pseudo-Lagrangian’ covariance we defined in 8 6.2.2 is the one case, 
where T + 0, in which (6.42) reduces to a double integral. In  this case since 

Y(x’) -- Y(x), T = T(x’)  - T ( x )  and r, = 0 

it follows from (6.22) that (6.42) becomes 

(6.43) 
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Since from ( 6 . 2 2 )  Li,(x, K) is linear in xi, which in turn is linear in K ~ ,  and if K$ 

is written in spherical polar co-ordinates K~ = ~ K Z  , where 

K: = (cos al, sin a, cos a,, sin a, sin a2), 

then xi = kx~(al, a2) may be defined and (6.43) becomes 

where 

x: = cos crl aT/ax - sin rl cos g2 U,, xz = cos a, aF/ay + sin a, cos a, U,, 

x; = sino,sina,, ( x " ) ~  = C ( ~ 2 ) ~ .  
3 

i= l  

Note that 

so that the result (6.44) is independent of the form of the upstream spectrum. 
The technique is due to Batchelor & Proudman (1954). The integral has been 
evaluated and will be published in its relevant context of turbulent diffusion. 

Restricting the calculation to the variance at  a point and using the notation of 
(6.441, 

Note that, unlike the symmetrical flows considered by Batchelor & Proudman 
(1954)) k x  + 0 if i + j ,  except on 8 = n. We now use (6.45) to evaluate 2 on 
19 = nand8 = &T. 

On8 = ?T, 

(6.46) 

where IE = sin4 vl(sin2 a2 + UZ, cos2 a2)2/x 4, 

IF = sin2a1cos2a,(sin2a2+ U ! c o s 2 ~ ~ ~ ) / ~ ~ 4 ,  

x 2 = cos2 a, + sin2 a, cos2 a, U: + sin2 a, sin2 a2 U:. 
Batchelor & Proudman (1954) showed that this double integral can be found 
exactly in terms of elliptic integrals, but it is equally convenient to examine its 
asymptotic properties and compute intermediate values. They found that as 
r +- co (or U, -f 1) 

and in the limit 

-- 
up& = 1) 

This result is in fact valid for any stagnation-line flow, and was used by Bearman 
(1972) for comparison with his experimental results. The results of computing 

44-2 
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FIGURE 15. Variation of the r.m.8. turbulent velocity components in the radial and 
tangential directions for the limiting cases of very large and very small scales of turbulence. 
(u) [(2)*/u',] ( r )  on 0 = 7r when u/Lx -+ 0, and a/Lx -+ 0, (a/L,) 5 + co. (b)  [(@)&/&I ( T )  at 
0 = T ,  0 = &T when a/Lx -+ 0, and aIL, -+ a), @/Lo) 6 -+ co. 
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(6.46) in the form of a curve of (u:/u:,)i(r) on 8 = n in the limit a/L, 3 co, 
(a/Lz) 9 1 is shown in figure 15 (a). Also shown is the curve of (u2/u2 )& ( r )  when 
a/L, -+ 0, taken from (6.20). Results for u?j/ukl = Cglukl and u$/u?,, using 
Batchelor & Proudman’s results, are shown in figure 15(b)  and Bearman’s 
paper respectively. It is useful to restate the asymptotic results that in the limit 
a/L, -+ co, (a/L,) < -+ co as 5 -+ 0 (V, -+ 0 )  

-- 
_. 

-- -- 21- 

(6.48) 

(6.49) 

where 

I ,  = 4 J‘s 2n sin2 q5 sin2 al ( cos2 al + sin2 al sin2 c2) 
sin a1 da, da,, 

u, 0 0 xx4 
= “/nlo2” (COS rl aT/ay + Ul sin a, cos ra) sin4 a1 cos cr2 sin2 g2 da, da,, 

U , O  X X 4  
2n (cos2 a, + sin2 a1 cos2 gz) [(alllay) cos a; + U, sin 0; cos c2I2 

sin al da2 dv,, 
IJ =Jy 0 0  xx4 

xX2  = ~ o s ~ a 1 / U ~ + s i n ~ c ~ s i n ~ a , +  [ (aT /ay )  cosol+ U,sina,c~sa,]~. 

Note that the form of these integrals is different from those required to find 3 
on 8 = 7~ because in travelling to 8 = Qn the vortex lines have been rotated as 
well as strained. The effect of rotation leads to terms like 

(aT /ay  COB a, + Ul sin al 00s g2) 

in x x 2 -  It is easily seen that, as T -+ 1, u$/uZl + I. Close to the surface of the 
cylinder, in the limit (a/&.) 5 -+ O O , ~  -+ 0,  where U, -+ 2 and aT/ay N - 1/(2<), 

-- 

(6.50) 

-- whereG, = $. 
The results of computing (6.49) are presented in a graph of ( C ~ / U ~ ~ ) *  ( r )  on 8 = n-, 
in figure 15 (b).  Curves are also presented for large-scale turbulence a/Lx -+ 0 

using (6.20), and show no difference between 8 = T, &r ! (In reality there will be 
less amplification at  8 = in.) Note that the asymptotic forms at  8 = +r, as 
+ 0, are similar when a/Lx -+ co, which is also borne out by (6.48) and (6.50). 
When a/Lz B I, but (a/L,) 5 = O( l), the only complete spectrum which 

can be straightforwardly obtained is 622(~1) at 5 = 0. Even then to calculate 
ii; at = 0 requires considerable further computing, which has not yet been 
performed. SinceOll(K1) hasnot yet beencalculatedover thefull range 0 < K~ < OD 
when (a/Lx) 5 = O( l), neither has 2. 

6.3.4. Physical interpretation of results for small-scale turbulence. Although 
some comments have already been made in 35.3.3 on the physical effects which 

- 
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give rise to changes in the velocity tensor Mi,(x, K) it  is now interesting to con- 
sider the spectra of the velocity to see which of the various effects are dominant, 
or equivalently which part of wavenumber space is dominant. 

Considzr first the results for the spectrum of the normal component of the 
velocity Oll(Khl) close to the body on the stagnation line. If the distance from the 
body is large compared with a typical eddy size (i.e. (a/&) ( > 1)  then at  low 
frequencies the amplific2tion of a1 by vortex stretching, discussed in $5.3.3, 
leads to the result that O,,(Khl = 0)  cc l/UZ,. At high frequencies the ‘piling-up’ 
%ffect diminishes the vortex stretching and consequently the amplification of 
(+ll(Khl -+ co) is only proportional to ,U;$. The more surprising result is that a t  the 
low-frequency end of the spectrum O,, (K, = 0) continues to increase as the body 
is approached even when the distance from the body is small compared with a 
typical eddy size ((a/&)( 4 1, equation (6.368)). The reason is that, although 
for each wavenumber the normal component of the velocity tensor -& = 0 a t  
the surface [ = 0 (owing to the blocking effect), for a given value of [ > 0, B,[ 
increases as K~ (or the intensity of the vorticity) increases. In  other words, at a 
point however close to the body t h e y  is a value of K3 such that li@lll > 0. There- 
fore in our inviscid approximation O,,(i?, + 0) increases as [ + 0, although it 
increases more slowly when (a /Lx)  6 < 1, being proportional to U,*, as compared 
with U i 2  when (a/&) ( 9 1. However, for a viscous fluid this singular amplifica- 
tion is halted a t  the outer edge of the stagn2tion-point boundary layer. Note 
that at  sufficiently high frequencies ( K ~ - +  co), Oll(2,) behaves in the same way as 
in the region where (a/L,) f 8 I, and increases like U T ~ .  Qualitatively similar 
results may be expected for Oll(Khl) when 6’ 4 T. 

The main result for the 2 on the stagnation line, obtained from integrating the 
spectrum, is that, when (a/L,) 5 I, 3 increases in proportion to UT,. The 
amplification, as might be expected, is less than that a t  low frequencies and 
greater than at high frequencies. Since the complete spectrum when (a/Lx) 6 < 1 
has not been computed, i t  is only possible to speculate that in this region 
increases approximately in proportion to U$, this reduction in the rate of 
increase being dus to the blocking effect. 

The spectrum GZ2 (2,) of the tangential gomponent of the velocity close to the 
body has a very different behaviour from @22(21) upstream and is quite different 
at  the stagnation point 0 = T compared with elsewhere round the cylinder. When 
(a/L,T) % I and at  low frequencies the spectrum exhibits a flattish peak, which at  
the maximum point may be three times the maximum value of the incident 
spectrum (figure 11). This peak occurs where K, 21 U, and is induced by the axial 
component of vorticity w3. It has the same form all round the surface. At high 
frequencies the spectrtm decays with a - 3 law, but P t h  no vortex stretching to 
amplify the velocity, OZ2(Kh1) @ much smaller than 011(~,) as k1 -+ 03. Equation 
( 6 . 3 2 ~ )  sh2ws that on 0 = 7r @22(Gl) cc UtKh,+. Figure 12 shows that at  high fre- 
quencies @2z(Khl) is larger downstream of the stagnation point. Within an eddy 
size of the body, i.e. (a/&) ( < I ,  the spectrum changes considerably. In figures 
12 and 14 the spectra have also been calculated at 6 = 0, i.e. at  the outer edge of 
the boundary layer, and they showed marked differences between 0 = T and 
0 =k 7 ~ .  It was mentioned in $5.3.3 that a t  low frequencies the 8 component of 
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velocity i@2n is O(l),  except a t  6' = 7r when K, = K~ and K~ 3 00. Then a2% is 
O(k*) and 62,(dl -+ 0) becomes very large. The details of this singular region 
of wavenumber space have not all been worked out yet. Itis interesting that at  
( = 0 when 8 =+ 7r the maximum value in the spectrum of OZ2(d,) does not occur 
at C1 = 0, as shown by the spectra at 8 = 3 7 r  (or 15' from the stagnation point) and 
8 = 7r in figure 14. This figure also shows how the turbulence close to the surface 
in the region of the stagnation point changes very rapidly when K, -+ 00. Then 
the fact that on 8 = ?T the Fourier transform, i@2j of E2 h%s an exponential decay 
with K~ for all values of K~ and K~ inevitably implies that 02, (d,) has an exponen- 
tial decay, as shown in figure 14. But when 0 =/= n, only decays exponentially 
with K, over a limited range of values of K~ and K ~ .  For other values of K~ and K ~ ,  

increase with K,. Therefore @22(dl) decays with K, much more slowly for 
8 =+ 7r than a t  0 = 7r. In  fact we find in (6.40) the interesting result that 

b 

6.4. Validity of spectra 

Although we discussed in $5.3.1 the distance from the body and the range of 
wavenumber space in which our solutions for %(K) are valid, it is also important 
to determine how these limitations affect the validity of the calculations of 
spectra, in $86.2 and 6.3. It has been shown how these calculations give different 
weight to different parts of wavenumber space depending on the values of a/L, 
and K ~ .  In  particular the energy-containing part of the spectrum is where 

2,s 1 or K~ 5 a/Lx. 

Therefore if a/& 5 1, using the result (5 .5 .2a) ,  it follows that the solutions for 
the velocity spectra in $6.2 are valid if 

g B Re-). (6.51) 

On the other hand, if a/Lx $- 1, so that much of the energy occurs when K~ $- 1, 
it follows from (5 .52b)  that the solutions for the velocity spectra in $6.3 are only 
valid if 

5 > K t 3 e - i  or ( 9 (a/L,)*Re-*. (6.52) 

This implies that if a/L, 9 1 viscous dissipation affects the distortion of the 
turbulence well outside the boundary layer on the body's surface, a phenomenon 
which was observed by Sadeh, Sutera & Maeder (1970b). A further implication 
of (6.52) is that the results of $6.3.2 for spectra sufficiently close to  the surface 
that (a/-Lx) < 4 1 are only valid if 

whence (6.53) 

It was shown in $5.3.1 that nonlinear terms in the equations for two components 
of vorticity could not be ignored close t o  the surface, unless as ( --f 0, 

or 

if K , =  O ( l ) ,  

P K ; ~  Q if K, 1. 
(6.54) 
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We were not able to show whether or not this condition also had to be satisfied 
for the r and 0 velocity components to be correctly evaluated. Thus a suficient 
condition for ell and GZ2 to be valid as t --f 0 is that (6.54) be satisfied, but this 
condition probably underestimates the magnitudeof a that is strictly necessary. 
On the other hand O,, is valid as -+ 0 provided that p < I and (6.53) is satisfied. 

For small scales of turbulence at low frequencies, at  points further from the 
body than one or two eddy sizes (i.e. a/Lx 1 and c(a/L,) 9 1) it has been 
assumed that, when integrating over all wavenumber space for K~ and K,, there 
is a negligible contribution from the region of wavenumber space where K ~ ,  

K~ < 1. The reason for this assumption is ;that, when k -+ 0,  mil(^) is regular 
everywhere in the flow, so that any error in Ol1(S, -+ 0)  is O((a/Lz)-4).  This error 
is much smaller than that caused by neglecting the higher order terms in the 
expression for a, in (5.27), which typically are O [ ( U / L ~ ) - ~ ] .  

Another assumption that has been made in the calculations of spectra is that, 
when (a/&) t < 1 and a/Lx  $ 1 or K ~ <  < 1 and K~ B 1, the condition (5.39) 
that K~ < @+2g3)* is satisfied. If (a/&) 9 1 and K~ < (la/Lx), then inspection 
of (6.34) and (6.38) reveals that the dominant contributions to the spectra come 
from the region in wavenumber space where (K; +K$  N u/Lx. For high frequen- 
cies, /cl $- 1 where ~ ~ i j  < 1, the dominant contribution to 02,(2,) comes from 
the region in wavenumber space where K~ K~ when 0 = m, but, when 0 =I= T ,  

K, 9 K,, K ~ .  Thus in these limiting situations the basic assumption for our calcula- 
tion of Mil(u) when k[ < 1 is satisfied. 

Another criterion for the validity of the analysis which must be satisfied is 
the statistical uniformity of the incident turbulence. It would appear that, if 
a/L, < 1, then the turbulence must be uniform over a distance large compared 
with L,, but that, if a/L, 9 I ,  then this distance is a. By recasting the analysis 
it may be possible to  calculate the turbulence when the incident turbulence is 
non-uniform over a distance comparable with the body size. 

1, K~ 

b 

7. Discussion 
7. I. Interpolation and approximation 

Although the calculations of spectra and variances in 8 6 were only performed for 
the limiting cases of turbulence of very large scale and very small scale, it is 
possible to draw some conclusions about the behaviour of turbulenc: which has a 
scale comparable with the size of the body, i.e. a/Lz N 1. Consider Ol1(el) on the 
stagnat,ion line zay at: = 1.1 when a/Lx  N 0.1. Then, when 2, < I, it  might be 
expected that GIll 2 Giy because lilIlll increases rapidly as K~ increases, but 
on tho okher hand at very high frequencies such that .^,(a/L,) = K~ $- 1, i.e. 
kl $ 10, Ol1(K",) would be given by the result for small-scale or high-frequency 
turbulence. Interpolating between these two limits and using the fact that the 
tabulated results show that JilIl1(~)( lies between the asymptotic values foz k + 0 
snd k --> a, we can draw a dashed line to suggest the probable form of O1l(.^l), 
as shoyn on figure 16. To take another example, when a/L, = 2-0, we can esti- 
mate G)ll(i?l = 0) using the result for a/L, $- 1 and (a/L,) 6 < 1 given by (6 .36b) ,  
and when 2, $- 5 use the results for the case where K~ 9 I and ~~g >> 1, given by 
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FIGURE 1,6. One-dimensional spectrum of the x component of velocity on the stagnation 
line, i.e. O,, (kJ ,  showing the asymptotic limits a/LE --+ 0 and u/Lx -+ co, and the approxi- 
mate forms expected for intermediate values of all;.. 

(6.23). The interpolation is again shown in figure 16. A similar investigation 
can be performed with 6,,(2,) and will be presented in a later paper when com- 
paring experimental and theoretical results. 

The important result of this examination of the limiting cases and of the 
tabulations of Ml, for k N 1 is that it suggests that for most of the range of E31 
on the line 6 = 7~ 

(7.1) 
A A 

lim {Gl1(~,)} 2 oI1(~,) B lim { Q ~ ~ ( K ~ ) )  
alLz+m a/Lz-+O 

and consequently 
- 

lim {U”,(z)> 2 a;(%) 2 lim {q(z)>. 

Although plausible interpolations are psssible for O,, (2,) on the stagnation line, 
because of the hump in the solution for @,(K,) as 5 -+ 0 no criterion such as (7.1) 
can be proposed. 

This qualitative interpolation argument can be quantified but not made any 
more rigorous by making the approximation that over the wavenumber range 

a/Lx+m a/L,-+O 

0 
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K c K~ M,l(u) is equal to its asymptotic value as k .+ 0, given by (5.39). The tran- 
sition wavenumber ut is defined by inspecting the computed and asymptotic 
results in tables I and 2. It is found that 1 ~ ~ 1  lies between 1.0 and 2.0. 

For K > K~M,~(K)  could be approximated by the asymptotic solutions for 
Mi, as k 3 co, (5.43) or (5.45) depending on whether k[  < 1 or k[ > 1. The tabu- 
lated values of M,,(K) can be used to  determine the value of K t .  This procedure can 
be adopted to provide highly approximate numerical values for all wavenumbers 
and integral scales. Some provisional results using this method were published 
by Hunt (1971). However, it  may be preferable to make experimental measure- 
ments rather than devise an elaborate calculation procedure such as this. 

7.2, Applicability of the theory 

The actual turbulent flow which has been analysed in this paper is not of course 
physically realizable at all points around the body, However, there are reasons 
to believe that the velocities predicted over certain parts of the flow can be used 
to predict experimental results. Consider the particular case studied here of a 
circular cylinder, where on account of the assumption (As 1)  that no separation 
occurs, the expression for the mean velocity U is only a good representation of a 
real flow in the region near the front stagnation point (and even then is not very 
accurate because the wake also affects the flow in this region). Near 0 = $-n the 
theoretical mean velocity is a very poor representation, and consequently so are 
the expressions for AT and Ay. In  addition, the boundary condition on the turbu- 
lence must be wrong because here the flow separates. However, the direction and 
variation with radius of the mean velocity is approximately represented near 
8 = 3n and therefore the correct qualitative predictions might be expected from 
the theory, Having ignored the existence of the wake by (As l),  it was necessary 
to make further artificial assumptions about the turbulent vorticity downstream 
of the body, (As 2 )  and (As 3). These assumptions will have much less effect on 
the calculations of turbulent velocities upstream of the separation point than 
(As 1) has on mean velocities. Thus (As 1) is the most critical assumption. It is 
probably worth abandoning this assumption and using a wake model to represent 
the mean velocity (such as used by Bearman 1972) only in order to calculate 
turbulent velocities more accurately near 6 = &r for the limiting cases of a/L, < 1 
and a/L, 9 1, because only then are the boundary conditions known: in the 
former case they are the same as for the mean velocity and in the latter case 
upstream of separation the boundary condition remains u . n = 0. 

If a/L, - I the flow can be accurately calculated near 8 = in- only when the 
interaction of the wake boundary and the incident turbulence is understood. 
As a first step, we have made the assumption in 5 2 that if ukIUm < 1 the incident 
turbulence and the turbulence induced by the wake are statistically independent, 
an assumption which should be fairly accurate in the stagnation region for all 
values of a/L,. This assumption has some experimental support even when 
a/L, N I and 8 = $77 (Petty 1974). There are some exceptional situations, when 
the theory will not be valid anywhere in the flow, one of which occurs if the Rey- 
nolds number and uL/Um are sufficiently large that the incident turbulence 
induces transition in the body’s boundary layer. Then rapid changes in the 
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position of separation and the position of mean separation may occur and result 
in O( 1) changes in the mean velocity. Another exceptional situation is where the 
body (e.g. a rectangular prism) is such that a small change in the angle of inci- 
dence of the mean velocity of O(u),/U,) produces an O( 1) change in the mean velo- 
city near the body by including a large change in the position of separation. 
Clearly these particular cases need a careful study. 

The theory of this paper is well worth applying to turbulent flows over other 
two-dimensional bodies. In  principle the most suitable application is for bodies 
from which no separation occurs but which introduce significant distortions 
into the flow, for example a flat plate normal to a stream with a filled-in wake 
(Bearman 1972) or an aerofoil at incidence, or a ‘Rankine solid’ Note that a 
stagnation point where A, is singular may not always occur, for example for a 
square prism at 45” to the flow. In  these and other flows where the mean velocity 
is known it is simple to calculate velocities and pressures to zero order in the 
limits as a/L, + 0, assuming the result of $6.2 that quasi-steady solutions give 
this limiting solution can be generalized and as a / L , - + m  In  particular this 
means that in these limits, given that the conditions (2.7)-(2.10) are satisfied, 
3 and O0 (i = 1 , 2 , 3 ;  with the exception of 2 when a/Lx --f 0)  can be calculated 
on the stagnation line approaching any symmetrical body just by knowing U,. 
When a/L, - 1 then wake boundary conditions are always important and we 
do not know what they are, but even assuming they can be ignored to a fist 
approximation, then lengthy numerical calculations are needed. These in general 
will be even more lengthy than for a circular cylinder. 

A 

7.3. Comparison with experiments 

No detailed comparisons of the theory with experimental results will be given 
here except for a brief discussion of those of Bearman (1972), who has recently 
published his experimental measurements of turbulent velocity on the stagnation 
line and fluctuating pressure at  the stagnation point of a bluff body (alretdy de- 
scribed in $7.2).  He compared his measurements of 2 (i = 1’ 2 ,3 )  and O,, (KhJ  
with theoretical results for the limiting cases alL, -+ 0 and alL, + 00, which were 
calculated from the measured values of u;, using the result of $ 7.2. In  his experi- 
ments the scale of turbulence was in the range 0.21 < a/Lx < 0.42, where a 
is the half-width of the plate normal to the flow. 

The qualitative predictions for Oii and 2 made in $ 7.1 for values of aLx < 1 
are borne out by Bearman’s experimental results. In  fact he found that for all 
three velocity components 4 lay between the asymptotic values fy very large and 
very small scales of turbulence. The one-dimensional spectrum 311($1) (figure 5 
of Bearman’s paper) demonstrates the important physical result that when 
alL, < 1 low-frequency components of the turbulent velocity u1 are reduced 
on the stagnation line but high-frequency components are amplified, and in 
particularAhis results approximately agree with the prediction that when K, 9 I 
values of @,,(~,) for all wavenumbers fall onto the same curve. Furthy compari- 
y n s  between this theory and his experiments will be made when (311(i?l) and 
@,,(a,) have been calculated near the stagnation point in the limit K~ 1, 

A 
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K~ 5 < 1. An extensive comparison between experiments for turbulent flow round 
a circular cylinder and the theory will be given by Petty (1974). 

7.4. Extensions of the theory 

We hope that this paper has demonstrated that the study of turbulent flows 
round a bluff body is an important and fruitful theoretical research problem. 
Some of the further problems that will be tackled are (i) extending the theory to 
other t,wo-dimeEsional and to three-dimensional bodies, (ii) completing t+e in- 
vestigations of Oii(Cl) when (a/L,) 6 < 1, (iii) calculating the spectra for @,,($), 
(iv) examining the effect of viscosity on the turbulence near the surface of the 
body and (v) calculating fluctuating pressures on the body. We shall not be under- 
taking a numerical calculation for all the wavenumbers necessary to calculate 
spectra and variances when a/L, - 1. This remains an important task to be done 
by someone else ! 

There is also a great need for further experimental work on this problem 
particularly in exploring the nonlinear effects due to finite intensity of turbu- 
lence, and in investigating in detail the effect of incident turbulence on the velo- 
cities in the boundary layers and wake of a bluff body. 

The work described here was begun in the Central Electricity Research 
Laboratories, Leatherhead, where I was encouraged to pursue this academic 
approach to a practical problem and where I received many valuable ideas and 
much mathematical assistance from J. Armitt and R.  A. Scriven. Continuing a t  
Cambridge I have been greatly helped by the criticisms and suggestions of G. K. 
Batchelor and H. K. Moffatt. I am also grateful for many rewarding discussions 
with P. W. Bearman and D. G. Petty, and for extensive computing assistance 
from J. C. Mumford, with support from the Science Research Council. 

i~ K~ K ( Iuc31) + 2 3 ;  sin26+O(kB), (AS) 



r = 1.01 r = 3.6 
r A 

I f  
2. 

\ 

K1 = Ka (QE)m* %ax A, (a;;), %lax A 
0.1 -0.975 0-005 1 1 - 6 ~  lo3 -0.694 0.017 1 4 . 5 ~  10 

3.0 0.327 -0.001 5 1 . 6 ~  10 0.230 0.100 1 3.8 
1.0 -0.560 0.009 1 7.1 X 10' 0.104 -0.094 3 1 . 0 ~  10 

10.0 -0.002 0.287 4 1.3 x 10 -0.074 0.418 2 1.5 

TABLE 3. Properties of the series QE: the largest term (Cliy)mx, the value of 
n. (nmm) at which = (C2;y)max, and the ratio A, = (Qz)-/l Q;;Ol 

K1 K2 K 3  

0.1 0-1 0.1 
1.0 1-0 - 
3.0 0.1 - 
0.1 0.1 1.0 
1.0 1.0 - 
0.1 3.0 - 
0.1 0.1 3.0 
1-0 1-0 - 
3.0 3.0 - 

r = 1.1 r = 2.0 
7- r---- A 

( a ? L x  nmax A (a%ax n m x  

-0.001 0.012 0 5.2 x 10 -0.003 0-037 0 
-0.003 -0.006 1 2.2 x 10 -0.022 0.016 1 

0.002 -0.003 1 7.3 -0.001 0.007 1 
-0.010 0.093 0 9 . 0 ~  lo3 -0.011 0.151 0 
-0.023 -0.070 1 2 . 3 ~  lo3 -0.157 0.054 1 
-0.012 0.128 1 1 . 1 ~  1 0 4  Not computed 
-0.020 0.182 0 5 . 3 ~  lo3 -0.006 0-097 0 
-0.025 -0.164 1 1 . 8 ~  10" -0.141 0.016 1 

0.032 0.071 1 1.8X 10' -0.014 -0.253 1 

7 

h 

4.0 x 1 0 4  
1.3 x 104 

4.5 x 104 
1.0 x 104 

9.0 x 102 

3.0 x 103 

1.8 x 103 
3.0 x 103 

TABLE 4. Properties of the series a:;: the largest term (ag)m,,, the value of 
n (mmax) at which u;; = and the ratio h, = la;;l/la;iol 

Nomenclature 

defined or the equation immediately following or preceding its definition. 
An equation number following a symbol indicates the equation where i t  is 

a 

aii 
b 

radius of circular cylinder (or typical dimension of a body) 
velocity tensor in terms of upstream vorticity, (4.30) 
integration variable used in 8 6 
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( 6 4 ,  (6.7) 
(5.46a), (6.35) 
(5.11) 
(6.23) 
(6.3b), (6.7) 
(5.27) 

(5.41, (5.6) 
(5.11) 
(5.27) 
modulus of wavenumber 
(5.43) 
a length scale of turbulence (3 2) or an eddy size (§ 5) 
outward normal to body 
integer variable 
pressure 
(6.12) 
(6.12) 
radial co-ordinate 
(3.30) 

(5.7) 
(6.12) 
vorticity Fourier transform, (3.24), (3.26) 
time 
dimensional and dimensionless turbulent velocity 
dimensional mean velocity and root-mean-square turbulent 

Cartesian co-ordinates 
constant, (5.34) 
boundary layers (3 2) 
(5.36) 

(6.5) 
(4.14), (4.18) 
external flow region (3 2) 

(6.6) 
(4.4) 

(4.4) 

velocity (in x direction) upstream 

( 5 . 4 6 ~ )  

(4.13) 
(6.12), (6.15) 
constants in § 6 
(4.25) 
(4.26) 
(6.33) 
integrals used in $6 
modified Bessel function (first kind) 
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1;1(;1 4 2 ,  (a,) (6 .25) ,  (6.30) 
$( ) 
Jn( ) 

K,( ) 
Lz 
ki (6.22) 

Mil 
n (2.24) 
Re Reynolds number, (2.7) 
Rij cross-variance, (3.30), (3.3 1) 
W (  ) ‘real part of’ 
S surface of the body 
s,i 
T” averaging kime, (2.5) 

T ‘Drifb’ time, (3.8) 
9- (3.24), (3.27) 
U, (V,, U,, U,), (U,, U2, U,) dimensionless mean velocity in Cartesian co-ordinates 
(G 4, U,) 
( W )  
$7 pressure Fourier transform 
X (5.32) 
Y (5.32) 
tv (3.24) 
B (3.24), (3.27) 

‘ imaginary part of’ 
Bessel function (first kind) 

modified Bessel function (second kind) 
integral scale of incident turbulence, (6.3a) 

velocity tensor in terms of upstream velocity, (3.28), (4.32) 

I%) (4.4) 

velocity Fourier transform, (3.24), (3.26) 

T, (3.3) 

dimensionless mean velocity in cylindrical co-ordinates 
wake region ( 0  2 )  

a (2.8) 
ail (4.2) 
a$?, a:? (4.8) 
B (2.9) 
Pi (4.20) 
p?, wn (4.21) 
Y Euler’s constant 
Y1, Yz (6.30) 
Yij, Ycoij (3.11) 
4 j Kronecker delta 
4J boundary-layer thickness 
S( ) delta function 
88 (As 3) in $ 2  
& energy dissipation density, (2.16) 
E (5.33) 
% jk alternating tensor, (3.25) 
5 (6.13) 
9 co-ordinate parallel to surface 
T K  (6.4) 
0 angular co-ordinate 
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K, K ~ ,  ( K ~  K ~ ,  K ~ )  wavenumber vector 
K t  = K i / k  (5.7) 
G (5.43) 

2,  $4.3 

P, Pi (4.3) 

A, A X  (5.3), (5.32) 

p$)(n = 1,2 ,3 ,4)  (5.10) 
p, p x  (5 .404  
U kinematic viscosity, (2.1) 

6 co-ordinate normal to surface 
P density (2.1) 
P X  (5.32) 
U (3.24) 
fll,U2 (6.44) 
f13 (4.26) 
r time difference (dimensionless) 
# (5.42) 

$ x  
X (5.30), (6.33) 
xix = X i P  (6.44) 
i (5.42) 
X X  (6.49) 

XV Xe,  XZ (6.33) 
21, kz, 2 2 3  (5.36) 

w', w 
r( 1 gamma function 
rci, r p  (5.26) 
rjr, Q? (4.19) 

Vi jk  (5.1) 

integration variable in 8 6 

xi7 (XI9 x z t  x3) (5.27) 

+ i  $i, ($-v 40, f i z )  (3.17) 
dimensional and dimensionless turbulent vorticity 

Au, Aw (3.i4) 

AYtj (5.1) 
AT (3.8) 
Atl (3.9) 
?dj(K1) (3.32) 
Odj(el), 6&J (6.4), (6.33) 

(6.36) 
0 (3.17) 
@w<j (3.30) 

Ydj (3.31) 

- a 

Y (3.2) 

1R (2.12) 
Qdf ( 4 4  
a;?, a;? (4 .7)  
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* 
t 

W 
max 

Superscripts 
dimensional variable 
complex conjugate 
time mean 
unsteady component of a random variable 
variable normalized with respect to A, 
Fourier transforms with respect to  t and z 
vector or tensor in cylindrical co-ordinates 
distortion, source, undisturbed values of Mi, 
term affected by presence of the body 
terms in expansion of Oij, Mi,, aij, aij 

Subscripts 

upstream or undisturbed value 
effect of wake 
maximum value 
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